Best Industries, Best I-125, 2301

Best 2301

Source Description:

Dimensions for the Best 2301 source 1,2   are taken from the study by Sowards and Meigooni 1 and Rivard et al 2. The 2301 source consists of a cylindrical tungsten marker 3.75 mm long with a diameter of 0.250 mm. In this study the ends of the marker are assumed to be hemispheres with 0.0125 mm radius (same as figure in TG-43U12). The marker is coated with an organic matrix (assumed to be polystyrene with a density of 1.06 g/cm3 and a composition by weight of 7.74% H and 92.3% C) containing 125I. For the purpose of these calculations the amount of 125I present in the polystyrene is assumed to be negligible. The thickness of the coating is assumed to be 0.10 mm on the cylindrical surface as well as the round ends. The active element is encapsulated in a 0.080 mm thick titanium casing with an outer diameter of 0.80 mm. The end welds are assumed to be hemi-spherical shells with a thickness of 0.080 mm. The overall source length is 5.0 mm and the active length is 3.95 mm. The cylindrical source element is free to move approximately 0.445 mm along the seed axis and 0.07 mm radially from the center of the seed, however, we assume the marker is always centred. The mean photon energy calculated on the surface of the source is 28.39 keV with statistical uncertainties < 0.012%

Dose-Rate Constant - Λ :

Dose-rate constants, Λ , are calculated by dividing the dose to water per history in a (0.1 mm)voxel centered on the reference position,        (1 cm,Π/2), in the 30x30x30 cmwater phantom, by the air-kerma strength per history (scored in vacuo). As described in ref. 3, dose-rate constants are provided for air-kerma strength calculated using voxels of 2.66x2.66x0.05 cm3 (WAFAC) and 0.1x0.1x0.05 cm3 (point) located 10 cm from the source. The larger voxel size averages the air-kerma per history over a region covering roughly the same solid angle subtended by the primary collimator of the WAFAC 4,5 at NIST used for calibrating low-energy brachytherapy sources and is likely the most clinically relevant value. The small voxel serves to estimate the air kerma per history at a point on the transverse axis and includes a small 1/r2 correction (0.5%) 3. egs_brachy and BrachyDose MC uncertainties are only statistical uncertainties (k=1).

Author Method Λ (cGy h-1 U-1) Abs. Uncertainty
Safigholi et al 6 WAFAC 1.0012 0.0002
Safigholi et al 6 point 0.9991 0.0014
Taylor, Rogers  7 WAFAC 0.998 0.002
Taylor, Rogers  7 point 1.002 0.003
Sowards, Meigooni 1 point (PTRAN) 1.01 0.03
Meigooni et al 8 TLD 1.01 0.08
Nath, Yue 9 TLD 1.02 0.07
Rodriguez, Rogers 10 TLD (Revised Meigooni) 1.032 0.057
Rodriguez, Rogers 10 WAFAC (BrachyDose) 0.999 0.002
Rivard et al  2 TG43U1-Consensus Value 1.018  

Radial dose function - g(r):

The radial dose function, g(r), is calculated using both line and point source geometry functions and tabulated at 36 different radial distances ranging from 0.05 cm to 10 cm. Fit parameters for a modified polynomial expression are also provided  11. The mean residual deviations from the actual data for the best fit were < 0.08%.  

Click image for higher res version

radial dose function

Fitting coefficients for g L (r) = (a0 r-2 + a1 r-1 + a2 + a3r + a4r2 + a5 r3) e-a6r
Fit range Coefficients
r min (cm) r max (cm)
0.05 10.00 a0 / cm2 (6.75+/-0.14)E-04
    a1 / cm (-1.452+/-0.027)E-02
    a2 (1.0594+/-0.0010)E+00
    a3 / cm-1 (5.152+/-0.023)E-01
    a4 / cm-2 (2.80+/-0.32)E-03
    a5 / cm-3 (2.31+/-0.06)E-03
    a6 / cm-1 (4.505+/-0.013)E-01
 

Anisotropy function - F(r,θ):

Anisotropy functions are calculated using the line source approximation and tabulated at radii of 0.1, 0.15, 0.25, 0.5, 0.75, 1, 2, 3, 4, 5, 7.5 and 10 cm and 32 unique polar angles with a minimum resolution of 5 o . The anisotropy factor, φ an (r), was calculated by integrating the solid angle weighted dose rate over 0 o ≤ ϑ ≤ 90 o .

Click images for higher res versions
F(0.50,θ)
Anisotropy function
F(2.00,θ)
Anisotropy function
F(4.00,θ)
Anisotropy function
F(5.00,θ)
Anisotropy function
 

Tabulated data:

Tabulated data are available in .xlsx format: Excel


References:

1. K. Sowards, A. S. Meigooni, A Monte Carlo evaluation of the dosimetric characteristics of the Best Model 2301 125 I brachytherapy source, Brachytherapy, pages, 57 ,327-333 , 2002 .
2. M. J. Rivard et al , Update of AAPM Task Group No. 43 Report: A revised AAPM protocol for brachytherapy dose calculations, Med. Phys., 31 , 633 - 674, 2004. 
3. R. E. P. Taylor et al , Benchmarking BrachyDose: voxel-based EGSnrc Monte Carlo calculations of TG-43 dosimetry parameters, Med. Phys., 34 , 445 - 457, 2007. 
4. R. Loevinger, Wide-angle free-air chamber for calibration of low--energy brachytherapy sources, Med. Phys., 20 , 907, 1993. 
5. S. M Seltzer et al , New National Air-Kerma-Strength Standards for 125 I and 103 Pd Brachytherapy Seeds, J. Res. Natl. Inst. Stand. Technol., 108 , 337 - 358, 2003. 
6. H. Safigholi, M. J. P. Chamberland, R. E. P. Taylor, C. H. Allen, M. P. Martinov, D. W. O. Rogers, and R. M. Thomson, Updated of the CLRP TG-43 parameter database for low-energy photon-emitting brachytherapy sources,  to be published (Current calculation).                     
7. R.E.P. Taylor, D.W.O. Rogers, An EGSnrc Monte Carlo-calculated database of TG-43 parameters,Med.Phys., 35, 4228-4241, 2008.          8. A. S. Meigooni et al , Experimental determination of dosimetric characteristics of Best 125 I brachytherapy source, Med. Phys., 27 , 2168-2173, 2000.                                                                                                                                                           
9. R.Nath, N.Yue, Dosimetric characterization of an encapsulated interstitial brachytherapy source of 125I on a tungsten substrate, Brachytherapy, 1, 102-109, 2002.     
10. M. Rodriguez and D. W. O. Rogers, Effect of improved TLD dosimetry on the determination of dose rate constants for 125I and 103Pd brachytherapy seeds,  Med. Phys., 41, 114301, 2014.                                                                                                                                           11. R.E.P. Taylor, D. W. O. Rogers, More accurate fitting of 125 I and 103 Pd radial dose functions, Med. Phys., 35 , 4242-4250, 2008.  


Carleton Laboratory for Radiotherapy Physics  


CLRP TG-43 Parameter Database V2
 May 5, 2020


Search Carleton