Measurement of Charge to Mass Ratio For an Electron

(<u>Thomson's Experiment</u>)

The scale of the subatomic world

The Electron:

- is an elementary particle: smallest speck of matter
- is normally found in the immediate vicinity of a nucleus, forming an atom
 - Mass (m_e):
 - 9.11 x 10^{-31} kg 1.6 x 10^{-19} C (C = Coulombs) Charge (e):
 - Charge is found by Millikan's Oil Drop experiment
 - So, if we can find e/m_e , we can determine m_e
 - In 1897, J.J. Thomson found this value Ratio (e/m_e): -1.76 x 10¹¹ C/kq
- Your Job: try to repeat that measurement today

Forces affecting the electron:

The magnetic field (B_{out}) produces a force: $F_B = B_{out} \cdot e \cdot v$ (v is the velocity of the electron)

This force is perpendicular to both B_{out} and v.

Finding the magnetic field, B:

Procedure:

Plug in transformer for cathode heater supply
 Switch on model "3D" D.C. supply to accelerate electrons down the tube and onto the screen set to ~3 kV (3000 Volts)

There should now be a blue trace on the screen

	Procedure:							
	 Switch on Beckman meter and Lambda power 							
	supply unit connected to coils							
	set to ~ 0.1 A (roughly)							
	Determine B							
	• Measure (x,y):							
100	determine R							
261								

Procedure:

- •Switch on second model "3D" DC supply connected to electrodes on top of mica screen
- Slowly increase potential to cancel deflection: determine v
- Fill in worksheet and calculate e/m
- Repeat with different current in coils
- · Dial down all power supplies and switch off

Procedure:
 Compare your results to accepted values.
• What are the possible sources of measurement error?

Thomson's *e/m* experiment

Run #		Your measurements	units	Calculated quantities		units
Determine the radius	x		metres	$R = \frac{x^2 + y^2}{2y}$		metres
of the track, <i>R</i>	y		metres			
Determine the magnetic field, <i>B</i>	Ι		Amperes	$B = 4.23 \times 10^{-3} I$		Tesla
Determine the electric field, <i>E</i>	V		Volts	$E = \frac{V}{0.052}$		Volts/metre
Determine the electron	's ve	elocity, v	$v = \frac{E}{B}$		metres/s	
Determine the electron	's cł	narge-to-mass ratio, <i>e/m</i>	$e/m = \frac{v}{BR}$		Coulombs/kg	

Run #		Your measurements	units	Calculated quantities		units
Determine the radius	x		metres	$R = \frac{x^2 + y^2}{2y}$		metres
of the track, R	y		metres			
Determine the magnetic field, <i>B</i>	Ι		Amperes	$B = 4.23 \times 10^{-3} I$		Tesla
Determine the electric field, <i>E</i>	V		Volts	$E = \frac{V}{0.052}$		Volts/metre
Determine the electron	's ve	elocity, v	$v = \frac{E}{B}$		metres/s	
Determine the electron's charge-to-mass ratio, e/m				$e/m = \frac{v}{BR}$		Coulombs/kg