Measurement of Charge to Mass Ratio For an Electron (Thomson's Experiment)

The scale of the subatomic world

The Electron:

- is an elementary particle: smallest speck of matter - is normally found in the immediate vicinity of a nucleus, forming an atom
- Mass (m_{e}): $\quad 9.11 \times 10^{-31} \mathrm{~kg}$
- Charge (e): $\quad 1.6 \times 10^{-19} \mathrm{C} \quad(C=$ Coulombs $)$
- Charge is found by Millikan's Oil Drop experiment
- So, if we can find e / m_{e}, we can determine m_{e}
- In 1897, J.J. Thomson found this value
- Ratio $\left(\mathrm{e} / \mathrm{m}_{e}\right): \quad-1.76 \times 10^{11} \mathrm{C} / \mathrm{kg}$
- Your Job: try to repeat that measurement today

Forces affecting the electron:

1. The electric field:

$F_{E}=q \cdot E \quad(q=e$, the charge of the electron $)$
The electric field, E, always points in the direction that a +ve charge would move if it were within the field.

Forces affecting the electron:

2. The magnetic field:

The magnetic field ($B_{\text {out }}$) produces a force:

$$
F_{B}=B_{\text {out }} \cdot e \cdot v \text { (} v \text { is the velocity of the electron) }
$$

This force is perpendicular to both $B_{\text {out }}$ and v.

Carleton University

Into the page	\odotOut of the page

Finding elm:

- Electrons move in circles in magnetic fields - This motion produces a centripetal force

$$
F=\frac{m v^{2}}{R}
$$

- We can equate this to F_{B} :

$$
B e v=\frac{m v^{2}}{R}
$$

- Re-arranging:

$$
\frac{e}{m}=\frac{v}{B R}
$$

Thus, to find e/m we need to know 3 things: the magnetic field, B, the radius of curvature, R, and the velocity of the electrons, v.
Carleton University

Finding the magnetic field, B:

- "Helmholtz" coil
arrangement delivers uniform magnetic field

- B depends on current, and is calibrated to be:

$$
B=I \times 4.23 \times 10^{-3} \mathrm{~Wb} \mathrm{~m}^{-2}
$$

(I measured in Amps)

Determine the radius, R :

- Measure y -deflection at a distance, x, from the exit of the electron

$$
(x, y)=(4,-2)
$$

- Given (x, y) - find R

$$
R=\frac{x^{2}+y^{2}}{2 y}
$$

-To prove this, try Pythagoras:

$$
\begin{aligned}
& (R-y)^{2}=b^{2}=\left(R^{2}-x^{2}\right) \\
& R^{2}-2 R y+y^{2}=R^{2}-x^{2} \\
& R=\frac{x^{2}+y^{2}}{2 y}
\end{aligned}
$$

Determine the velocity, v:

- Now switch on the Electric Field
- Use it to cancel the effects of the B field

$$
E=\frac{V}{d}=\frac{V}{0.052}
$$

- Use the Electric field to cancel the deflection at the x value where the magnetic deflection was measured

$$
\begin{aligned}
& E e=B e v \\
& v=\frac{E}{B}(\mathrm{~m} / \mathrm{s})
\end{aligned}
$$

Carleton University

Procedure:

- Plug in transformer for cathode heater supply - Switch on model "3D" D.C. supply to accelerate electrons down the tube and onto the screen set to $\sim 3 \mathrm{kV}$ (3000 Volts)
- There should now be a blue trace on the screen

Procedure:

- Switch on Beckman meter and Lambda power supply unit connected to coils set to ~0.1 A (roughly)
- Determine B
- Measure (x, y):
determine R

Procedure:

- Switch on second model "3D" DC supply connected to electrodes on top of mica screen
- Slowly increase potential to cancel deflection: determine v
- Fill in worksheet and calculate e/m
- Repeat with different current in coils
- Dial down all power supplies and switch off

Procedure:

- Compare your results to accepted values.
- What are the possible sources of measurement error?

Thomson's e/m experiment

Run \#		Your measurements	units	Calculated quantities		units
Determine the radius of the track, R	x		metres	$R=\frac{x^{2}+y^{2}}{2 y}$		
	y		metres			
Determine the magnetic field, B	I		Amperes	$B=4.23 \times 10^{-3} I$		Tesla
Determine the electric field, E	V		Volts	$E=\frac{V}{0.052}$		Volts/metre
Determine the electron's velocity, v				$v=\frac{E}{B}$		metres/s
Determine the electron's charge-to-mass ratio, e / m				$e / m=\frac{v}{B R}$		Coulombs/kg

Run \#		Your measurements	units	Calcula	ed quantities	units
Determine the radius of the track, R	x		metres	$R=\frac{x^{2}+y^{2}}{2 y}$		metres
	y		metres			
Determine the magnetic field, B	I		Amperes	$B=4.23 \times 10^{-3} I$		Tesla
Determine the electric field, E	V		Volts	$E=\frac{V}{0.052}$		Volts/metre
Determine the electron's velocity, v				$v=\frac{E}{B}$		metres/s
Determine the electron's charge-to-mass ratio, e / m				$e / m=\frac{v}{B R}$		Coulombs/kg

