

Biological Clocks

Circadian rhythms are controlled by biochemical networks
Even bacteria need to keep time: e.g CyanoBacteria Eldon Emberley, SFU, finds 3 proteins give an oscillatory system with 24 hour period

- Midsummer day: when the sun rises/sets in most northerly position: sunrise aligns with "heel stone"
-Measured at Stonehenge: important to define seasons and hence time to plant crops

8

Sunset

\section*{| South-west | West | North-west |
| :---: | :---: | :---: |
| Midwinter | Equinox | Midsummer |
| 4 p.m. | 6 p.m. | 8 p.m. |}

- Note that position varies more as you move away from the equator

Peter Watson

- From observation sites the towers line up with sunrise and sunset
- Can tell date to within 2-3 days. (Ivan Ghezzi and Clive Ruggles)

Chankillo

- Much later
- Row of i3 towers on a ridge in a desert in Peru

Peter Watson

Need some definitions (roughly as
the Babylonians might have used them)

- Year: interval between (e.g) most northerly sunrises. 365 1/4 days
- (lunar) Month: interval between (e.g.) full moons ~ 29 1/2 days
- Solar day: interval between times when the sun is due south $=24$ hours (defn)
- Sidereal day: interval between (e.g.) Sirius being due south = solar day -4 minutes

- $20^{\text {th }} / 21^{\text {st }}$ March $22^{\text {nd }} / 23^{\text {rd }}$ Sept

8

Babylonian

- 12 lunar months + extra short month

1. The months are lunar months. This means the first day of each month beginning at midnight is the day of the astronomical dark moon.

2. The sun always passes the wintf
3. If there are 12 months betw counting either month 11 during which the sun r principal term or Cu designated inter intercalary. Nr naming (i.f that yea' suffices.
, Capricorn) during month 11.
sive occurrences of month 11, not nese 12 months must be a month . same zodiac sign throughout (no it). If only one such month occurs, it is such months occur, only the first is designated dars before true motions of the sun were used for or in years where there is no double-cusp month in ,or following years (i.e., usually), the following rule . no principal term (or cusp) in it is designated intercalary.

But note

- Year is not a whole \# ofdays
- Year is not a whole \# of lunar months
- However 19 years $=235$ lunar months (+2 hours): Metonic cycle
- Most societies fudge 12 months = 1 year by adding in extra days.
θ

e.g Chinese

- Months are alternately 29 \& 30 days
- Gives year of $3541 / 3$ days
- Add in intercalary month every second or third year to re-align year and month
- Sun also passes through 12 zodiacal constellations in year (Aries, Pisces, Aquarius ...) or roughly $1 /$ month

e.g Hebrew calendar

- Lunar months

- Intercalary month added 7 times in 19 years
- gives 6939.550 days
- vs 6939.750 days

e.g Roman calendar

- Romulus: 10 months of 30 or 31 days +61 days of winter
- Numa: 12 months of 28-31 days, totalling 355 , so add 22 or 23 days to Feb. every $2^{\text {nd }}$ year
- Julius Ceasar: essentially modern calendar with leap years adding one day to Feb every 4 years

Babylon: Mul Apin tablet

On the 1st of Nisannu the Hired Man becomes visible. On the 20th of Nisannu the Crook becomes visible.
On the 1st of Ayyaru the Stars become visible.
On the 20th of Ayyaru the Jaw of the Bull becomes visible. On the 10th of Simanu the True Shepherd of Anu and the Great Twins become visible.
On the 5th of Du'uzu the Little Twins and the Crab become visible.
On the 15 th of Du'uzu the Arrow, the Snake, and the Lion become visble; 4 minas is a daytime watch, 2 minas is a nighttime watch.
On the 5th of Abu the Bow and the King become visible.
On the 1st of Ululu [. . . .]
On the 10th of Ululu the star of Eridu and the Raven become visible.
On the 15th of Ululu Shu-pa, Enlil, becomes visible. On the 25th of Ululu the Furrow becomes visible

0

A tutulemma. Photo from Side, by Tunc Tezel
Combines sun's position through year with an eclipse

Water-clock (probably first non-astro clock)

- www.mlahanas.de/ Greeks/Clocks.htm
- Water in a container drains out through small hole: problem is that the flow is non-uniform.
- Hence keep container full with valve so as to have constant pressure
- clepsydra (= "water thief")

Eclipses

Tablet with a list of eclipses between 518 BC and 465 $B C$, mentioning the death of king Xerxes

Why do these matter?
CALPURNIA: When beggars die, there are no comets seen;
The heavens themselves blaze forth the death of princes. Julius Caesar
(Chinese astronomers Hi and Ho executed for failing to predict eclipse in 2134 $B C)$.

GLOUCESTER These late eclipses in the sun and moon portend no good to us: though the wisdom of nature can reason it thus and thus, yet nature finds itself scourged by the sequent effects.....

...................

EDMMUND I am thinking, brother, of a prediction I read this other day, what should follow these eclipses.
EDGAR Do you busy yourself about that?
EDIMUND I promise you, the effects he writes of succeed unhappily; as of unnaturalness between the child and the parent; death, dearth, dissolutions of ancient amities; divisions in state, menaces and maledictions against king and nobles; needless diffidences, banishment of friends, dissipation of cohorts, nuptial breaches, and I know not what.
EDGAR How long have you been a sectary astronomical?

And they even mattered to artists

Eclipse preediction

Saros cycle

- Eclipses repeat after 18 years and 11.3 days.
- The .3 days shifts the eclipse about 110° degrees west.
- Also some saros sequences start at the south and drift North, others at the North and drift South.
- This means that the cycle is very complex: can only see it after many years.

Why is it so complicated? Need to combine
I.Earths rotation
II.Moons orbit (not quite circular)
III.Earth's orbit (ditto)
IV. and the plane of the moons orbit precesses

Eclipse of 1999 seen from Mir

Babylonians observed total eclipse 15 April 136 BC.

Peter Watson
and they would even have seen it from the moon !

K
Peter Watson

Observed total Eclipse 15 April 136 BC.
and they would even have seen it from the moon! But they shouldn't have!

4: Computed track of totality for the eclipse of 15 April in 136 BC , assuming a fixed length of day $(\Delta T=0)$. This track lies more than 50° to the west of Babylon, where totality was actually observed.

Earth's rotation has slowed down, by $1 / 100 \mathrm{sec} /$ century, because of tidal effects! i.e. earth isn't a very good time-keeper

亚
\square

Antikythera Mechanism

- Found in 1901
- probably late second century BC.
- National Archaeological Museum in Athens: wikipedia
- So what is it?
- X-rays show very complex structure
- Many (at least 30) gears: one has 47 teeth !!!!

This may be how it works

Clock
 Display:
 Shows the number of time intervals
 Counter
 Oscillator:

generates identical time intervals

Need three Ingredients

Pendulum
Power supply: usually gravity)

Escapement: must transfer energy to pendulum to keep it swinging

Chronometer

At sea, need to determine latitude and longitude: see Longitude (Dava Sobel)

Peter Watson

- Need to be able to measure south (compass)
- and postion of sun (or star) wrt horizon
- astrolabe or sextant

Not all were practical....

Design for a marine chair submitted to the Board of Longitude. Source: Cambridge University Library

- Could use Moons of Jupiter: act as astronomical timekeeper

Longitude problem: error on longitude typically $100 \mathrm{~km}(!)$ in 18 th century.

Admiralty offered $£ 20,000$ ($\$ 10,000,000$ today) to solve problem

If we know when the sun is a certain point in sky, can get longitude
(e.g. if it's due south at 2 pm , we are $2 / 24^{*} 360=30^{\circ} \mathrm{W}$ of Greenwich)

So by measuring time accurately, can get position (first link between time and space!)
-

Chronometer

- Need to determine time to better than $1 \mathrm{~s} /$ day
-Harrison (1721) constructed chronometer accurate to better than 1/5 s/day

Took him 20 years to collect reward!
Peter Watson

Any sufficiently advanced technology is indistinguishable from magic
(Arthur Clarke)

Pulsars (1968)

- neither earth's orbit or rotation are sufficiently stable now: best astronomical timekeeper are pulsars, accidentally observed as pulsars (Jocelyn Bell etc)
- Very regular radio pulses, period of $4 s$ to 2 ms
- Note that height of pulse is very irregular

What's the difference?

- Power Source: Coiled spring
- Mercury Battery
- Time: escapement mechanism
- Quartz crystal
- Displays: second hand + date wheel
- LCD
- Setting: listen to the church clock!
- Reset once a day by transmitter in Colorado Springs

Best known is Crab. Known to be remnant from supernova in 1054 (seen by Chinese) Pulsar at centre has period of -0.03s

And you can even listen to them

This is Vela

And this is PSR 0329+54

Period of Crab measured to be 0.03308471603 s (i.e. stable to 1 part in billion)

Atomic Clocks

- Best is now at NRC: Caesium fountain clock better to 1 part in 10^{12} i.e. would lose or gain \sim hour over lifetime of universe: so accurate that the only comparison is one Cs clock to another!
- Works because atoms are isolated from each other, so don' influence each other
- Target is 1 part in 10^{15} : one minute in lifetime of universe

Louis Marmet

Frequency and Period

Note for what follows:
-for repeated motions (e.g. Oscillators), Time and frequency are closely linked
-Frequency $=1 /$ Period
-So something that vibrates with a period of 0.5 s has a frequency of $2 \mathrm{Hertz}(2 \mathrm{~Hz})$

$$
F=\frac{1}{P}
$$

Peter Watson

A faster atomic pendulum: ${ }^{133} \mathrm{Cs}$ atoms

Atomic oscillator: the ${ }^{133} \mathrm{Cs}$ atom

"Classical" Picture

Microwaves make the atoms oscillate

Cs Atoms in a Magneto-Optical Trap

Atomic Clock:
Accuracy 10^{-12} to 10^{-17}, after a few hours

Why is this precision needed?

Today's fast pace: from 0.001s to 0.000000001s
Synchronization of Power Networks: Uncertainty $\pm 1 \times 10^{-10}$

August 2003 Northeast Blackout - Great Lakes Region http://www.itsdocs.fhwa.dot.gov/jpodocs/repts_te/14021.htm

Computer synchronization

"All these delays-a thousandth of a second here, a millionth of a second there. We"ll have to get the darn thing fixed."

Computer
transactions

Banks $\$ \$ \$ \$ \$ \$ \$ \$$

NRC provides encrypted time-stamped secure NTP connections for banks at a cost of $\$ 110 / \mathrm{yr}$!

Louis Marmet

Time dissemination

Marmet

Subdivisions of time: Direct perception

- Roughly $1 / 10 \mathrm{~s}=100 \mathrm{~ms}$, but depends very much on the stimulus

Perception of Time

- We are not very good ...

The influence of shape on colour

E
E
E
E E

E

The influence of shape on colour

E
E

E

Limits:

- Eyes can't respond in much less than $1 / 20 \mathrm{~s}$ ($=50 \mathrm{~ms}$)
- Which is why we can watch TV

Brain will actually superimpose pictures if time is very short

Indirect perception via sounds

- We can hear notes in octaves: each octave is a doubling of frequency

- C Db D Eb E F Gb G Ab A Bb B

C 8.2 16.432.765.4 130.8261 .6523 .31046 .52093 .04186 .08372 .0 Db8.7 17.334.669.3 138.6277.2554.41108.7 2217.54434.98869.8
 Eb 9.7 19.438.977.8 155.6311 .1622 .31244 .52489 .04978 .09956 .1 E 10.320 .641 .282 .4 164.8329.6659.31318.5 2637.05274.010548.1 F $\quad 10.921 .843 .787 .3 \quad 174.6349 .2698 .51396 .92793 .85587 .711175 .3$ Gb 11.623.146.292.5 185.0370 .0740 .01480 .02960 .05919 .911839 .8 G 12.224.549.098.0 196.0392.0784.01568.03136.06271.912543.9 Ab 13.026.051.9103.8207.7415.3830.61661.23322.46644.913289.8 A 13.827.555.0110.0220.0440.0880.01760.03520.07040.014080.0 Вb 14.629.158.3116.5233.1466.2932.31864.73729.37458.614917.2 B 15.430.961.7123.5246.9493.9987.81975.53951.17902.115804.3

- But shoot it too fast

Picture as seen

Analyzing

If the gap t < 100 ms , see one image and can pick out missing spot If the gap $t>100 \mathrm{~ms}$, see two images, cannot pick out missing spot

- Roughly 20 Hz to 20 kHz
-O.K. 10 kHz for us!
- I.e. 50 ms down to $0.05 \mathrm{~ms}=50 \mu \mathrm{~s}$
-(why have we bothered to evolve this?)

Electronics Directly

- Clock circuit in computer
- 2.8 GHz in this Mac:
- i.e. ~. 35 nanoseconds (ns)

Pulsed lasers

- Paul Corkum at NRC/ Ottawa U developed techniques for cutting laser beams in few attosecond lengths:
- 1 attosecond (as)=10-18 s $=0.000000000000000001 \mathrm{~s}$
- Allows still pictures of atoms

Atomic transitions

- E.g the laser pointer
- Atom makes transition from one level to another, emitting photon
- Typical time ~ 1 picosecond (ps) $=10^{-12} s=1 /$ trillionth
 second $=0.000000000001$ s

Planck time

- If we believe in superstring theory, they oscillate with a period

$$
t_{p}=\left(\frac{G \hbar}{c^{5}}\right)^{1 / 2}=5.4 \times 10^{-44} s
$$

- 0.0000000000000000000000000 000000000000000 00005s
- Shortest time scale that makes any sense in physics

But wait a moment

-Can we really go on subdividing time?

- Is it really continuous or a succession of moments?
-Like a water-wave?

- Magnify by 1000 : OK
- Magnify by 1000000 : OK
- Magnify by 1000000000 : start seeing molecules

8

Is time continuous?

- Is space?
- Suppose space is discrete at some scale a: say 1 attometre ($1 / 1000$ size of a proton)
- Then sizes smaller than this have no meaning

Is time continuous?

- Hence time scales shorter then $\mathrm{a} / \mathrm{c} \sim 10^{-27} \mathrm{~s}$ have no meaning
- Which is roughly the kind of limit we have now
- If space or time is quantized in some way, the reality is probably much more complicated

Is time continuous?

- Hence time scales shorter then a/c $\sim 10^{-27}$ s have no meaning
- Which is roughly the kind of limit we have now
- If space or time is quantized in some way, the reality is probably much more complicated

The Nucleus as a Clock

- Nuclei consist of (roughly equal) number of neutrons and protons
- Atomic Number $\mathrm{Z}=$ charge on nucleus $=\mathrm{N}_{\text {protons }}$
- This defines chemistry
- Mass number A $=\mathrm{N}_{\text {protons }}+\mathrm{N}_{\text {neutrons }}$
- Isotopes: nuclei with different A but same Z.

Notation

- We need to have some way to describe the nucleus we are talking about
- Lithium nucleus has 3 protons and 4 neutrons so

However you can always figure out the $\mathrm{N}_{\text {neutron }}$ so

$$
{ }_{3}^{7} L i
$$

$$
\begin{gathered}
\text { Name implies } \\
\text { Z, so simply }
\end{gathered} \quad L i
$$

- Half-life: time taken for half the nuclei to decay
- e.g. ${ }^{13} \mathrm{~N}$ has half-life of 10 minutes
${ }^{13} \mathrm{~N}={ }^{13} \mathrm{C}+\mathrm{e}^{+}+V$
- If we start with 1000 nuclei, how much would be left after 30 minutes?
- after 10 minutes ~ 500 atoms
- after 20 minutes ~ 250 atoms
- after 30 minutes ~ 125 atoms

PW

Radioactive Decays

- All radioactive decays have a similar behaviour.
- The decay occurs totally at random
- probability of decay is proportional to the number of nuclei:
- This reduces the number of nuclei available to decay
- Half-life: time taken for half the nuclei to decay.

Carbon dating

- In the atmosphere, some of the ${ }^{14} \mathrm{~N}={ }^{14} \mathrm{C}$ by cosmic rays.
- This gets incorporated in living things, substituting for ${ }^{12} \mathrm{C}$
- When the object dies, no more ${ }^{14} \mathrm{C}$ is absorbed,
- What is already there decays back to ${ }^{14} \mathrm{~N}$, with a half-life of 5700 years.

Carbon Dating

- 50% of atoms are left after 5700 years
- 25% after 11400
- 12.5% after 16100 etc

Turin Shroud

- (supposedly used to wrap Christ in when he was lowered from the Cross)
- Proportion of ${ }^{14} \mathrm{C}$ which is 89.5% of that of current materials.
- -l- age of about 800 yrs

WIkipedia

How about large time intervals?

- Much less interesting for now
- Human lifetime $\sim 2 \times 10^{9}$ s $=$ 2 Gigasecond $=2$ Gs ~ 88 years
- Lifetime of the universe $\sim 5 \times 10^{17} s=$ 0.5 exasecond $=.5$ Es ~ 14 billion years

