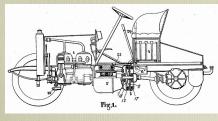


Transport

- What governs how efficient our cars can be?
- limited by friction/wind-resistance
- Since autos rely on heat, will need to understand how to convert heat to energy (later)

Transport


- Are hybrid or plug-in cars the answer?
- Does public transport (buses and trains) use energy more efficiently?
- lets see

Energy and transport

- To drive at a constant speed, need ~40kW at 60 km/hr~15 m/s
- ~ 2.4 MJ/km ~ 0.07 litre/km
- which becomes ~7 litres/100km
- However 1500 kg car would have KE of 200kJ
- Need to supply this every time you accelerate
- becomes heat when you brake

Hence hybrids

- K.E. of car converted back to electric energy
- Can't change cruising power consumption
- Not exactly a new idea!

Henri Pieper's 1905 Hybrid Vehicle Patent Application. Wikipedi

Hence hybrids

• Work best in cities, with start-stop

Text

OC Transpo has 154 fuel-efficient hybrid buses, but they are contributing to fuel costs being overbudget.

The diesel-electric buses are designed to perform best on low-speed routes with frequent stops and starts. The city eyed the routes for the hybrids because the repetitive stop-and-go eats up diesel fuel and increases costs.

When the city bought the buses, Transpo's intention was to just use them on these kinds of routes, but there aren't 154 of them and the transit department needed to run the buses elsewhere in the city. Those other routes, such as express routes, don't provide the same kind of fuel efficiency for the hybrids.

JON WILLING, OTTAWA SUN

Wikipedia

Transport

- Can we reduce the pollution due to transport?
- Worst gas is CO₂ (carbon dioxide) need to understand why this matters

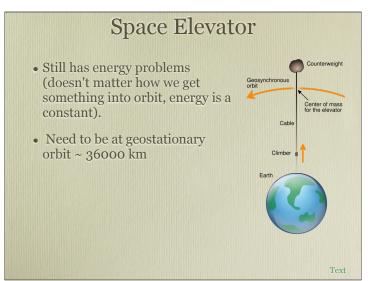
Transport

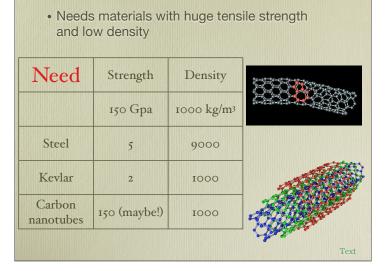
 Why is it so much easier (cheaper) to travel horizontally than vertically?

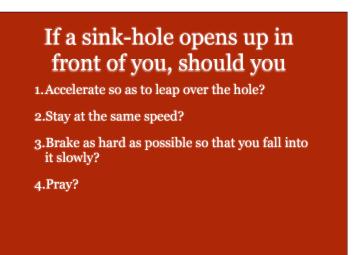
How about space travel? Virgin Galactic has managed to reduce drastically the price of getting to space and over time will reduce it still further. The starting price for flights is \$200,000 with refundable deposits starting from \$20,000. This gets you 150 km up!

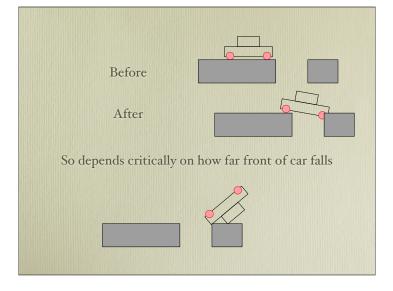
e.g. space shuttle

- K.E. $\sim 3 \text{ TJ} = 3 \times 10^{12} \text{J}$
- All gets converted to heat
- Temp ~ 3000°C


- To cross the Atlantic (4000 km) is ~\$1000
- Almost all the difference is K.E.!
- We don't have hybrid space-craft!




Wikipedia


Can we be smarter?

Text

Very roughly, if width = 5m
If v < 4m/s (15 km/hr), you fall in and survive
If 4m/s<v< 10 m/s (36 km/hr) you crash and die (well, maybe not!)
if v > 10 m/s, you cross the hole