### Quantum Mechanics and Reality

#### Peter Watson



Julian Voss-Andreae

- We can calculate measured values with phenomenal accuracy
- E.g. An electron acts like a tiny magnet: exactly how tiny?
- In sensible units
- -1.001159652181 (2006 measured)
- -1.001159652182 (2008 theory)
- So quantum mechanics cannot be *Wrong*

 No known theory can be distorted so as to provide even an approximate explanation [of wave-particle duality]. There must be some fact of which we are entirely ignorant and whose discovery may revolutionize our views of the relations between waves and ether and matter. For the present we have to work on both theories. On Mondays, Wednesdays, and Fridays we use the wave theory; on Tuesdays, Thursdays, and Saturdays we think in streams of flying energy quanta or corpuscles.

- Sir William Bragg

PW

- I think I can safely say that nobody understands quantum mechanics. Richard Feynman
- We have used quantum mechanics as a tool: does it just disguise something deeper?
- Or "Shut up and calculate!"
- So what is this wave thing?



# What is light?

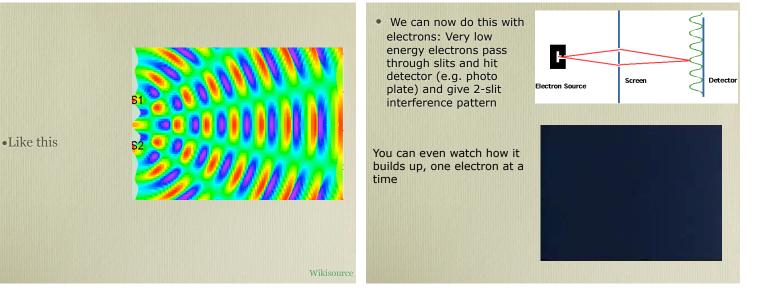
#### Particle? Newton, Descartes

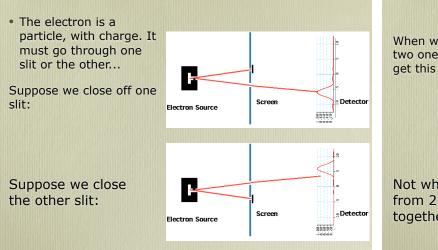
Kerner: Look at the edge if the shadow. It is straight like the edge of the wall that makes it. This means light is ..little bullets. Bullets go straight. Hapgood (Tom Stoppard)

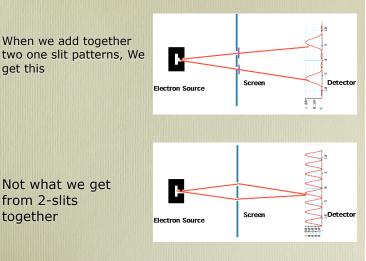
#### Wave? Young, Huyghens

Kerner: When you shine a light through two little gaps, side by side, you don't get particle patterns like for bullets, you get wave patterns like for water. The two beams of light mix together

Hapgood (Tom Stoppard)


#### Yes? Planck/Einstein


Light travels as wave, but arrives and departs as particle


#### • Which slit did the electron go through?

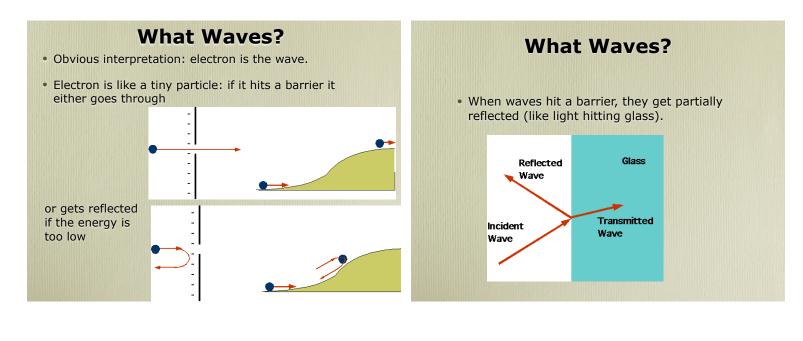
We choose to examine a phenomenon which is impossible, absolutely impossible, to explain in any classical way, and which has in it the heart of the quantum mechanics. In reality it contains the only mystery...Any other situation in QM, it turns out, can always be explained by saying, "You remember the case of the experiment with the two holes? It's the same thing."

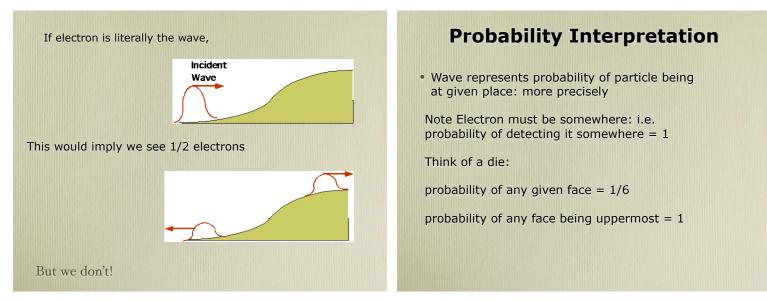
#### Richard Feynman, the Character of Physical Law

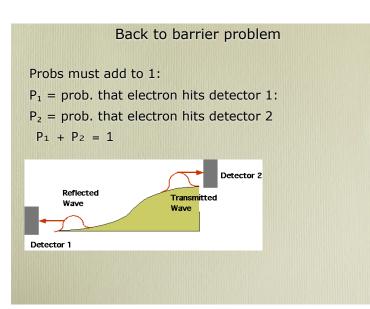


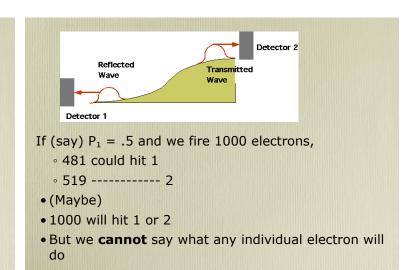





 Suppose we get sneaky and allow electron through but check which slit it went through.


Now we get sum of one slit patterns, but not a 2 slit pattern!


More worrying than this: we can do a "delayed choice" experiment: don't try to observe the electron until **after** it has gone through one of the slits...that still destroys the pattern.


**Conclusion** We cannot decide which slit the electron went through without destroying the pattern. Observing something fundamentally changes it! There was a young man who said "God Must think it exceedingly odd That this tree Continues to be When there's no one about in the Quad"

Kerner: Now we come to the exciting part. We will watch the bullet to see how they make waves ... The wave pattern has disappeared Because we looked. Every time we don't look, we get wave pattern. Every time we look to see how we get wave pattern we get particle pattern Hapgood (Tom Stoppard)









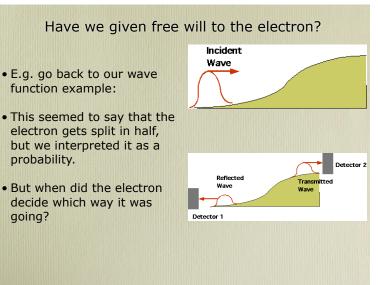
#### **Classical Determinism**

Given state of solar system in (say) 100 A. D., can use Newtonian mechanics to predict earth's position now

#### **Quantum mechanics:**

Can only predict most likely (probable) position now.

#### Morals


- 1.Macroscopic (i.e. large) objects are predictable, electrons aren't!
- 2.Cannot ask "what happens?": can only ask "what can we measure?"
- 3.No reason to assume that rules deduced for macroscopic objects are true for very large/very light/ very fast objects.
- 4."What colour is an electron?"

## Measurement

In classical mechanics, we believe that a object is the same whether we measure it or not.

In quantum mechanics, until we have measured it, its condition is indeterminate.

- E.g.: suppose we measure the position of a particle and it was here →C
- Where was it just before?
- •Classical Mechanic At C.
- Quantum Mechanic Somewhere: it was only measuring it that fixed its position . Where is a candle flame after it is blown out?



• Classical Mechanic Obviously at the moment it was reflected.

Quantum Mechanic It is indeterminate until you measure it

• The Einstein-Podolsky-Rosen paradox (EPR) is a more sophisticated version of this

God does not play dice. Einstein

His way out was "hidden variables"

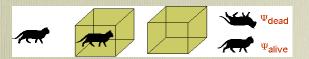
Underneath quantum mechanics, there is some "clockwork" where everything is deterministic. It only looks random on the surface.

## Schrödinger's Cat

was supposed to show the idiocy of people who really believed in quantum mechanics.

• The trivial version: you have a box, with a lid: when it is opened, cyanide gas is released.

Take a cat.


Put it in the box and close the lid.

Is the cat dead?

Why don't you look?

 The sophisticated version: you have a box, with a lid and a single radioactive atom: when the atom decays, cyanide gas is released.

Take a cat Put it in the box and close the lid. Is the cat dead or alive?



- •Classical Mechanic Obviously its either dead or alive
- Quantum Mechanic It is indeterminate until you measure it . More exactly, the cat is a mixture of alive and dead cats: the measurement fixes it.
- Schrödinger Don't be stupid.

## Both Einstein and Schrödinger were wrong.

Bell's theorem shows that there is a measurement that you can do on the polarizations of the particles which is incompatible with any possible hidden variable theory.

Aspect did the experiment.

The Schrödinger's Cat experiment has been done:

No animals were injured in the making of this movie.

One atom: process is totally random, so you can't decide if a one-atom cat is alive or dead without measuring it(!)

Many atoms  $(10^{29})$ : constitutes an independent measuring system, so the cat measures it's own deadness

Few atoms (2-20): process becomes steadily more predictable

God not only plays dice, but throws them where they cannot be seen. Hawking

## Measurement

 This "measurement fixes things" is known as the "Collapse of wave function": obviously very ugly.

How does the electron know it is being measured?.

Do we need an actual conscious observer?

Is there a link between consciousness and QM?

## **Conclusions:**

Either Quantum mechanics is correct, and there is no "simpler" system

Or Reality is even uglier than we thought: e.g.

non-local hidden variables: every bit of the universe is involved with every other bit: very Zen, but totally wipes out free will!

#### 

(Ugh!) Does it bother you that 20th century technology depends fundamentally on something no-one understands?