

What is Physics?

- · We'll take physics as the example science
- Physics is about the way the universe works: i.e. what are the laws of nature
- · How do we deduce laws from Nature?
- · Guess them, and see what the consequences are
- · How do we guess?
- · Look for patterns in Nature

E.g Motion: Aristotle...

- Motion can be divided up into "Natural" and "Unnatural"
- e.g. it is natural for a stone to fall, and a force must be supplied to stop it
- It is natural for a cart to stop moving, and so a force must be supplied to keep it moving, so the motion is "unnatural"

- · Note how dangerous it is to do one step in this process: theory without experiment is bad.
- It is contrary to reason to say that there is a vacuum or a space in which there is absolutely nothing. Descartes
- Particularly dangerous is developing theories based on assumptions which are SO obvious that you don't write them down: e.g.
- Time is the same whether you are moving or not
- The world is 3-dimensional
- The simplest objects in the universe can't have a "handedness"

• The scientific approach to the examination of phenomena is a defence against the pure emotion of fear....This made for a kind of harmony and confidence. The sun came up about as often as it went down, in the long run...Tom Stoppard, Rosencrantz and Guildernstern are Dead

e.g. Everything Stops Moving

1. Is it true that everything stops?

• By and large, it works

- 2. Why does it appear that all motion stops?
- 3.Are there any examples of systems where things don't stop moving?

Motion: Galileo/Newton

• e.g. A stone has a gravitational force that acts on it

• A cart has a frictional force which slows it down: to

Models

· Ball will have air resistance, gravity will vary, sun

and moon will attract ball, ball won't be a perfect

flat plain, we have

• This is a theme we keep returning to : Life is

Difficult (usually too difficult!)

overcome this force, a force in the direction of motion

0 0.

and causes it to fall. To stop it falling, an equal

All forms of motion are the same

upward force must be applied

must be applied.

sphere..

Note that the world

has become an infinite

So replace it:

the child is

irrelevant.....

Culture/Philosophy of Science:

- Science differs from most other areas of academic endeavour in that
- · Primary Sources are not important (no one reads Newton)
- Knowledge is cumulative
- "If I have seen further than other men, it is because I have stood on the Shoulders of Giants." Isaac Newton

· General principles exist, from which many consequences follow

- Essentia non sunt multiplicanda praeter necessitatem (Entities are not to be multiplied beyond necessity) William of Occam
- Or KISS
- Hypotheses non fingo Isaac Newton
- (although he was lying!)
- practitioners totally ignore the critics (e.g. the philosophers, the sociologists, the social constructivists)

But usually knowledge is

incomplete

• The number of rational hypotheses that can explain any

• Given two theories, how do we choose between them?

given phenomenon is infinite (Zen and the Art of

Motorcycle Maintenance, Pirsig)

Occam's Razor

· Find an experiment to distinguish them or

• (unfortunately "simpler" is a loaded term)

• Choose the simpler (??????) which is known as

• There is something fascinating about science. One gets such wholesale returns of conjecture out of such a trifling investment of fact. (Mark Twain)

• We can think of this as a game, but what is a game? (Wittgenstein)

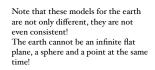
Motion: Galileo/Newton

• SIMPLER??

 Aristotle didn't need to introduce these extra forces. However, Galileo/Newton theory makes

more predictions

• Note that, although you have to be careful in choosing the model, vou don't have to have the same model in two different calculations.


• e.g for a satellite in orbit, we need to consider the earth as a perfect sphere, 6500 km in radius

Critical Test:

- · Aristotle: Heavy objects fall faster than light
- Galileo/Newton: All things should fall at same speed (in absence of air resistance)
- The experiment Galileo didn't do!
- First get your facts, then you can distort them at your leisure (Mark Twain)

e.g for the earth in orbit around the sun. we need to consider the earth as a point with some mass

What is an electron?

- "What is" questions usually require a description ..
- What is a pomegranate?

But for a model of an electron

- a spinning ball of negative charge
- Note: this is not reality, but a convenient crutch for thinking!!!!
- ...Any picture of the atom that our imagination is able to invent is for that reason defective. An understanding of the atomic world in that primary sensuous fashion ...is impossible. Heisenberg

What is an electron?

- "What is" questions usually require a description ..
- What colour is an electron?
- What shape is an electron?
- Is it soft or hard?
- How big is it?

- What colour is an electron?
- Colour comes from reflected light: an electron is too small (actually, it reflects light of all colours, so)
- What shape is an electron?
- To decide what shape something is, we need to "see' itIs soft or hard?
- What can we "poke" it with?
- How big is it?
- Depends on how you measure size; best assumption is that it's a point.

- "What is an electron?" is not a good question
- "How does an electron behave?" is, but
- You're not going to like the answer (Marvin, in the Hitchhiker's Guide to the Galaxy)
- It behaves like a solution of the Dirac Equation