Kinematics: How things
move

Transport

- What governs how efficient our cars can be?
- Are hybrid or plug-in cars the answer?
- Does public transport (buses and trains) use energy more efficiently?
- Can we reduce the pollution due to transport?
- Why is it so much easier (cheaper) to travel horizontally than
vertically? vertically?

Chaps 2,3,4,7, weeks I-2

Description of Motion

 Kinematics- We will work on a "need-to-know" basis. We want to understand the following
- Distance, Velocity and Acceleration
- Force
- Newton's Laws
- Gravitational Force
- Energy

Note

- We measure distance in metres
- We measure time in seconds
- So we measure speed in metres/second
- Acceleration is the (change of speed) in a certain time.
- If w go from $5 \mathrm{~ms}^{-1}$ to $8 \mathrm{~ms}^{-1}$ in 6 seconds
- Acceleration

Achilles and the tortoise

1.Achiles wants to catch a tortoise that is 100 m away.
2.He runs twice as fast. Can he catch it?

- e.g. A car travelling between traffic lights:
- Lighits are 25 ni apart
- car takes 10 s to travel betwoen them, by accelerating to start with and then braking at the same rate.

$$
\square
$$

-

Summary:

- If we have a constant acceleration a
- after t seconds our speed will be
- $\mathrm{v}=\mathrm{at}$
- our distance (from where we started) will be
- $\mathrm{s}=1 / 2 \mathrm{at}{ }^{2}$
- in words,
- distance $=1 / 2$ acceleration \times time \times time

- If you go to Orleans

Does Achilles catch the tortoise?

We have an infinite series of moves
4.t.00
$2.100+100 / 2=150$
$3.100+100 / 2+100 / 4=1 / 5$
$4.100+100 / 2+100 / 4+100 / 8=187.5$
5....................
$x .100+100 / 2+100 / 4+300 / 8+100 / 16+\ldots .=200$

- So we asked the wrong question: not how many
moves does he take, but how far does he have to go.
- Infinite series can have a finite sum!

Average Speed

- is just distance/time
- $\mathrm{v}=\mathrm{d} /\left(\mathrm{t}_{1}-\mathrm{t}_{0}\right)$
- e.g. if Achilles runs $\mathrm{d}=100 \mathrm{~m}$ starting at 4.00.00 p.m. and ending at 4.00 .20 p.m. then
- $\mathrm{v}=5 \mathrm{~ms}^{-1}$ (metres per second or m / s)

- Speed: For first 5 seconds speed increases
uniformly
- For next 5 seconds speed decreases uniformly
- Cars do have a speedometer calibrated in $\mathrm{km} / \mathrm{hr}$: calibrated m / s it would show
- om m / s at $\mathrm{t}=\mathrm{os}$
- $5 \mathrm{~m} / \mathrm{s}$ at $\mathrm{t}=5 \mathrm{~s}$
- $0 \mathrm{~m} / \mathrm{s}$ at $\mathrm{t}=10 \mathrm{~s}$

Something useful: How fast can a bus travel?

- On the open road, maybe $100 \mathrm{~km} / \mathrm{hr}$
- = $100 / 3.6 \sim 28 \mathrm{~m} / \mathrm{s} \quad$ Mostly it's simpler to work
in metres and seconds,
- Lets make a model: not kilometres and hours
- In town, max speed is $50 \mathrm{~km} / \mathrm{hr} \sim 14 \mathrm{~m} / \mathrm{s}$
- stops are 200 m . apart, 40 seconds required to load passengers
- if acceleration is $0.5 \mathrm{~m} / \mathrm{s}^{2}$, what is average speed?
- Will accelerate for 20 s , distance is 100 m
- then decelerate for 20 s , distance is 100 m
- total distance $=200 \mathrm{~m} \sqrt{ }$
- max speed is $10 \mathrm{~m} / \mathrm{s}$
- Average speed is (total distance)/(total time)
- $=200 / 70 \sim 2.9 \mathrm{~m} / \mathrm{s} \sim 10 \mathrm{~km} / \mathrm{hr}$ (!)

If a sink-hole opens up in front of you, should you 1.Accelerate so as to leap over the hole?
2.Stay at the same speed?
3.Brake as hard as possible so that you fall into
it slowly? it slowly?
4.Pray?

Why can't we accelerate at (say) 100 times the rate? Then we would get from one stop to the next in 1 s !

Note (sometimes important)
There is a difference between velocity and speed

- Velocity is speed with a direction: a vector
- If the car does this in 70 minutes its
- average speed $=60 \mathrm{~km} / \mathrm{hr}$
- average velocity $=0$!
- why?

Gravity \& Galileo

- Easiest accelerating system to understand

- A ball is thrown up in the air.
- During the first part of its motion (before it reaches its maximum height)
- velocity is upward, acceleration is downward.
note the speed decreases to zero, then increases
- after
- velocity is downward acceleration is downward.

- vecocity $=0$

1. Trevor Oberhammer
2.If a penny were dropped from the top of the CN tower could it severely or fatally injure a person on the sidewalk below?
3.This is a good question because there are many different areas of physics to consider such as force, resistance, momentum and such as a penny really gain enough speed and such as a penny from really height to seriously harm someone? Or would it just really stin and possibly leave a bruise?
4.My estimate for the difficulty of this question would be a 4 .

- A ball is dropped
- acceleration i
downward.
- velocity increases
uniformly

