

Potential Energy

- If you drop something, kinetic energy increases. - This energy is originally in the form of potential energy (P.E.).
- Near the earth's surface if you lift a body of mass m through a height h, its change in PE is
- P.E. $=\mathrm{mgh}$

Conservation of Energy (nothing to do with energy conservation!)

- Energy can be transformed from one kind to another, but cannot be created or destroyed
- As long as there is no friction total
(mechanical) energy will be conserved: it can be transformed from one form to another.
- P.E. \Leftrightarrow K.E.
- Doesn't matter how complicated the force is

Note it doesn't matter how we get the energy

- e.g putting a block on a table can be done in many ways, but the energy is always the same

Energy

- an incredibly powerful idea, which governs the behaviour of
- cars
- humans
- cell-phones
- atoms
- weather
- galaxies
- Need a unit for energy: the Joule (Joule originated study of heat energy \Leftrightarrow mechanical energy)
- so a 1500 kg car travelling at $10 \mathrm{~m} / \mathrm{s}$ has a KE of
- $1 / 2 \mathrm{mv}^{2}=75000 \mathrm{~J}$
- 1.5 kg computer dropped from 2 metres
- mgh~ $30 J$

Most systems dissipate energy

- But actually it just gets converted to heat energy

Nuclear Energy

- Hydrogen bomb: heat small amount of gas up to ~ 10 billion ${ }^{\circ} \mathrm{C}$ for a very short time
- ~1 PJ
- 100 trillion Joules

Start with the energy of motion
Kinetic energy

- is defined to be
- K.E. $=1 / 2 \mathrm{mv}^{2}$
- mega: $1 \mathrm{MJ}=10^{6} \mathrm{~J}=1000000 \mathrm{~J}$
- giga: $1 \mathrm{GJ}=10^{9} \mathrm{~J}=1000000000 \mathrm{~J}$
- tera: 1TJ = $10^{12} \mathrm{~J}=100000000000 \mathrm{~J}$
- peta: 1PJ = $10^{15} \mathrm{~J}=100000000000000 \mathrm{~J}$
- eka: 1EJ $=10^{18} \mathrm{~J}=1000000000000000000 \mathrm{~J}$

Heat energy

e.g boiling one litre of water (turning it to
steam) takes -2.3 MJ (million joules)

Joule was the first person to figure that heat was a form of energy

Bio-chemical energies

- Your daily consumption (as food) $\sim 10 \mathrm{MJ}$

- To get to moon, must escape the "gravity
well" of the earth and fall into that of moo
well" of the earth and fall into that of moon
- Means there is a minimum energy we must have to escape earth:
- e.g. for 1 kg need at least 60 megajoules (roughly 3 litres of gas)
- but the 3 litres of gas weighs more than a kilogram
- A particle will escape from the earth if it has positive energy
- At the earth's surface, "escape velocity" is $11 \mathrm{~km} / \mathrm{s}$

How fast do we need to throw something to escape from the earth's gravity?

- At the earth's surface, we want some K.E + some P.E.

Total energy never changes

- At an infinite distance from the earth, spaceship has stopped moving
- K.E. is zero
- P.E. is zero

Space Shuttle Atlantis

Black Holes

- This is the Schwarzchild radius (loosely the black-hole radius) for any mass.
- What is this for the earth?
- ~ 9 mm

-What are these?

Constan

- e.g. for the earth:
- $\mathrm{R}=6500 \mathrm{~km}=6.5 \times 10^{6} \mathrm{~m}$
- $\mathrm{G}=6.67 \times 10^{-11}$
- $M=6 \times 10^{24} \mathrm{~kg}$
- then
- Vescape $\sim 11100 \mathrm{~m} / \mathrm{s} \sim 11 \mathrm{~km} / \mathrm{s}$
- $\mathrm{V}_{\text {orbit }} \sim 7 \mathrm{~km} / \mathrm{s}$ (close to earth's surface)

Black Holes

Invented by

- Einstein

Hawking?
Well, actually, John Michell, rector of Thornhill
Church in Yorkshire
geologist?philosopher? astronomer? Seismologist? - Polymath.

- presented his ideas to the Royal Society in London in 1783.

Energy \neq Power (but they are related)

- Power = rate of energy consumption (or rate of energy production)
- 1 watt $=1$ Joule/second
- Light-bulb ~100W
- You (from food) ~ 100 W
- Laptop~50 W
- Car (at $60 \mathrm{~km} / \mathrm{hr}$) ~ 40 kW
- From sun: 1.4 kW/m²

- Momentum

- $\mathrm{p}=\mathrm{mv}$
- = mass \times velocity
- To stop an object requires
- forcextime
- (can supply a large force for a short time, all small force for a long time)

How many forces?

- Gravity and lift

James Watt

Beam engine was first efficient steam engine

- enabled the industrial revolution

Canada

- Total ~300 GW
- Electrical ~60GW
- per capita $\sim 10 \mathrm{~kW}$
- Note (very confusingly) a kilo-watt hour is a unit of energy not power
- $1 \mathrm{kWh}=3600 \times 1000 \mathrm{~J}=3.6 \mathrm{MJ}$

How many forces?

Why isn't the string straight?

No string is
ever straight pulls it down

How about space craft?

- Two separate problems
- Flying through
atmosphere require
wings to provide, lift
- Must reduce drag
- so we can even think of radiation powered sailing ships!
- Need huge, very light sail: Say $1 \mathrm{~km}^{2}, 10 \mu$ thick so very vulnerable to meteors et
- Only works in space (so still need rocket to escape earth) - acceleration very small (maybe g/1000)
- But wouldn't a solar sailing ship be romantic - Small ones will be launched soon

