Forces and Motion

- Note that it is particularly easy to forget reaction forces:
- in this case, if you ignore the reaction force, the block would fall through the table.

and opposite

- An action is a force exerted by one object on another
- The reaction is the force exerted by the second on the
first

Second Law

- The single most important equation in Physics!

Force $=$ mass x acceleration

Gravitation

- Most important (for us) is gravitational force, which gives rise to weight
- To a good approximation, all objects falling near the Earth's surface have the same acceleration
- $\mathrm{a}=-\mathrm{g}$ where $\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$
- How are grav. acen. and velocity connected?
- Useful to compare forces to gravitation
- e.g. if your bus accelerates at 1 metre/ $\mathrm{s}^{2} \sim \mathrm{~g} / 10$, you need a horizontal force of $\sim 1 / 10 \mathrm{mg}$

Note: the force is required to accelerate you, so it's in the same direction
You feel a force that seems to throw you backwards

- Newton's 2nd. law shows that everything has the same acceleration in a gravitational field.
- $\mathrm{F}=\mathrm{ma}$ (this is 2 nd. law) $=\mathrm{mg}$ (this is weight)
- $\mathrm{F}=\mathrm{ma}=\mathrm{mg} \rightarrow \mathrm{ma}=\mathrm{mg}$

- Note:
- Mass of a body is the same anywhere in the universe
- Weight is the force on that body on the surface of the earth

Why can't we accelerate at (say) 100 times the rate?
Then we would get from one light to the next in $1 / 10 \mathrm{~s}$!

Why can't we accelerate at (say) 100 times the rate? Then we would get from one light to the next in $1 / 10 \mathrm{~s}$!

1. For long periods, can manage 1.5 g easily
2.Short periods 4 g
3.Blackout at 10 g
4.Squashed at 100g!

Warning: this slide contains an equation

- The extra step is to realise that any two bodies in the universe attract each other
- If they are mass M and mass m, separated by a distance r
- Weakening of gravity + falling of the moon - \rightarrow period of moon $=27$ days $=$ lunar month
-This was the first time that
laws deduced on the Earth were seen to apply outside!

- Faster

Law of universal gravitation applies between any two bodies anywhere in the universe:

- Note that the forces are equal and opposite:
- you pull the earth as much as it pulls you!

Need to worrry about a couple of other kinds of forces

Friction

- A very complicated force

- Terminal velocity

- we get a balance between the grav. force downwards
- $\mathrm{F}_{\text {grav }}=\mathrm{mg}$ (doesn't change)
- and air resistance (drag)
upwards
- $\mathrm{F}_{\text {drag }}=1 / 2 \mathrm{CAev}^{2}$
- $=1 / 2$ (Shape factor) \times Area \times density \times speed \times speed
- Velocity will increase until these two balance
- Terminal velocity

Mass of what
is falling:
e.g human
- For a human $\sim 200 \mathrm{~km} / \mathrm{hr} \sim 50 \mathrm{~m} / \mathrm{s}$
- For a coin $\sim 20 \mathrm{~km} / \mathrm{hr} \sim 4 \mathrm{~m} / \mathrm{s}$
- For a dust particle $\sim 1 \mu / \mathrm{s} \sim \sim 1 \mathrm{~mm} / \mathrm{hr}$
- ($1 \mu=$ micron $=1$ millionth of a metre)
- In space, no air resistance to slow down dust
"Shape"
usually

- Contact forces be understood at the atomic level
- Atoms have very weak interactions at large distances
- Very strong repulsive ones at short distances
$\bullet \bullet \bullet \bullet \bullet$
-

- There a many other forces:	
- e.g tension	
- e.g. elastic	Wuxusur
- e.g nuclear	monomoung
- e.g electrical	Cowner
- e.g magnetic	$\text { MWWUWWW } \rightarrow$
To finish up transport, we need to introduce energy	

- at the atomic level, surface are rough and lock into each other
$\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$
$\bullet \bullet \bullet \bullet ~$
$\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$
$\therefore \quad \bullet \bullet$
$\because \because 0: 0010 \cdot$

