<section-header><section-header>

Atoms, Fields and Waves

- Starting with Robert Boyle, we take atoms seriously
- But we also need fields in space
- and waves (water, sound, light....)

Then we'll understand everything!

Temperature can be felt qualitatively, but physiological estimates are notoriously bad.

What is heat?

- So the starting question is: what is temperature?
- 0°C is water with ice floating in it
- 100°C is boiling water
- Even using thermometers, there is no guarantee that two thermometers will measure the same value:

Two Views of Heat

"Macroscopic": i.e. what can we measure in a lab.

"Microscopic": i.e. what happens on the level of atoms.

So where is the energy in heat? Critical experiments were done with gases:

- What happens if you pump on a bicycle pump slowly?
- Vary pressure, keep temp constant.

PV=const

Pressure ×Volume is constant

Boyle's Law

What happens if you heat up a balloon?

Change temperature at constant pressure:

V=const(T-T_o)

True for all gases:

To=-273 C

Real gas will liquefy (e.g. N2 at ~-200°C)

or solidify (e.g. CO2 at -40°C), and the relation no longer works.

- Defines absolute temp. scale (Kelvin scale)
- 0K =-273.16 °C : the "absolute zero"
- Then V=const×T
- We can combine Charles' law and Boyle's Law to give "Ideal Gas Law"
- Pressure ×Volume ~ Temperature
- PV=const×T
- The constant depends on "amount" of gas (actually number of molecules)

John Dalton The father of chemistry	 Dalton's Principles Elements are made of extremely small particles: atoms Atoms cannot be subdivided, created, or destroyed Atoms of a given element have same properties (e.g size, mass) Atoms of different elements have different properties. Chemical compounds are created when atoms of different elements combine in simple whole-number ratios. 						
Atoms = a-tomos ~ no slice!	 Atoms always combine in the simplest way In chemical reactions, atoms are combined, separated, or rearranged. 						

Dalton's Principles

Elements are made of extremely small particles called atoms 10/10!

Dalton's Principles

Atoms cannot be subdivided, created, or destroyed Can fuse or fission nuclei Can "divide" atoms" e.g. $H \Leftrightarrow H^+ + e^-$

Basis of chemical reaction theory! 6/10

Dalton's Principles

Atoms of a given element have same properties(e.g size, mass) Now know that isotopes can have same chemical

properties but different mass E.g: deuterium had twice mass of hydrogen

8/10

Dalton's Principles

Atoms of different elements have different properties. 10/10

Dalton's Principles

Chemical compounds are created when atoms of different elements combine in simple whole-number ratios.

Yes but....

Dalton's Principles

Atoms always combine in the simplest way No! He had water as OH, ammonia as NH 2/10!

Lavoisier/Gay Lussac

- Used our understanding of gases to explain reactions
- E.g.; two volumes of hydrogen combine with one of oxygen to make one of steam
- 2H +O ➡H₂O
- Actually a bit more complicated
- 2H₂ +O₂ ➡2H₂O

Dalton's Principles

In chemical reactions, atoms are combined, separated, or rearranged. Yes!!! 10/10

Sixty years later and we understand Dalton and the rest of 19th c chemistry with Mendeleev's Periodic table: all of the elements combined in simple pattern

Group→1 2		3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
1	1 H																	2 He
2	3 Li	4 Be											5 B	6 C	7 N	8 0	9 F	10 Ne
3	11 Na	12 Mg											13 Al	14 Si	15 P	16 5	17 Cl	18 Ar
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	54 Xe
6	55 Cs	56 Ba		72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra		104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Uut	114 Fl	115 Uup	116 Lv	117 Uus	118 Uuo
Lai	nthan	ides	57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu	
Actinides		89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr		
			1111	11138	fall?	a la	363	1111	RH.	1111			100		15.21	1111	1117	

What else are atoms good for?

James Clerk Maxwell

Tom Leher has provided us with a useful mnemonic

Kinetic Theory

A gas consists of atoms interact only as hard spheres with a rigid wall

Collisions with the wall will produce a force on the wall, which is the pressure of the gas.

Start with one atom in 1-D!

Note...

• Even in this dumb model, we get Boyle's law

Volume - distance between walls Pressure - average force

Double distance between walls Volume ➡ 2×volume Pressure ➡ 1/2×pressure

• Collisions redistribute the energy: heavy molecules move slower on average

• We can understand a number of things from the kinetic theory: e.g. how compressing a gas makes it heat up (think of a bicycle pump!)

We can turn this into a theory of gases

Energy does not change

- Higher velocity ⇔ <u>more</u> energy
- Higher velocity ⇔ more collisions ⇔ higher pressure
- Higher velocity ⇔ <u>harder</u> collisions ⇔ higher pressure

Temperature is energy!

This tells us ...

- Joule was right: energy and heat are the same thing!
- Energy is required to heat anything up

Zero of temperature is when things stop moving

- Heavier atoms move slowly than lighter atoms
- Molecule of oxygen at room temp has
- •v~1/2 km/s

Kinetic Theory of Gases lets us understand:

- Temperature (how fast the molecules are moving)
- pressure (how many hit a given surface in a given time)
- viscosity of a gas
- specific heat
- speed of sound
- speed of shock waves
- efficiency of engines
- Theory due to James Clerk Maxwell, who developed it around 1860.
- Except that

A digression: how science is done

- All papers go through a refereeing process
- Note that referees are vital to the process, but sometimes they can totally destroy a good idea.

John Herapath (in 1836) : calculated the speed of sound of a gas, and the effects of air resistance on trains. (Totally ignored by the engineers : how could something as insubstantial as air possibly have any effect on something as massive as a railway engine?)

"the idea that trains could operate at 60 m.p.h. or more (as suggested by Stephenson) is **absurd**; (remember, he was writing in 1836, a 20 years after the invention of the steam engine) second, every effort should be made to minimize air resistance."

PW

John Waterston: In 1845, submitted paper to the Royal Society, which developed the kinetic theory in great detail: absolutely correct in every important way. The referee's report reads:

To the Secretary of the Physics Committee, R.S.

Dear Sir,

I have received a paper, from the clouds for ought I know, but conjecture that it may have been sent to me by Mr. Weld for a report. In my opinion the paper is nothing but nonsense, unfit even for reading before the Society. I am, dear sir Yours very sincerely Lubbock

PW

Raising temperature takes energy

- Heating water:
- to raise 1 kg by 1°C takes 4200 J
- to boil 1 kg water takes 2.3 MJ
- to melt 1kg ice takes 334 kJ

Solids: Long range "order" • • • • Forces win over random energy

Liquids: Short range "order" Forces - random energy, atoms can move

Atoms fixed (maybe crystal)

Gases: No "order" Random energy wins over Forces Atoms move freely

- We didn't tell the atoms (or birds) to make a gas, solid or liquid
- "emergent phenomena" seem to be common

Maybe that is what consciousness is....

We can't assume all molecules are nice hard spheres

- $H = \frac{1}{2} \frac{\delta^{+}}{\delta^{+}} + \frac{1}{2} \frac{\delta^{+}}{\delta^{-}} + \frac{1}{2} \frac{\delta^{+}}{\delta^{+}} + \frac{1}{2} \frac{\delta^$
- Water is complicated!
- Like most crystals, the shape depends on how it is formed

• But what are these?

PW

Haloes are caused by hexagonal crystals forming in the atmosphere

Not all liquids are simple

- Difficulty that atoms move in liquid IP viscosity
- Most liquids (e.g. water) have low viscosity until freezing

Pitch has very high viscosity

Experiment at Trinity, Dublin started in 1944

Seventh drop just fell

How about Glass?

PW

Obsidian

Natural glass, produced in volcanoes. Note opaque, very hard

• obsidian projectile point

Wikimedia

- Mostly Silicon dioxide (quartz in crystalline form)
- High melting point (1200°C)
- Add Sodium carbonate (washing soda) lowers this to around 700°C

If a liquid is VERY viscous, it can solidify before becoming ordered: this is the "glass transition"

- E.g. Amorphous silica:
- ~ 570°C for soda-glass

Crystallization occurs at ~ 270°C

PW

E.g annealing: hitting a piece of hot material allows atoms to slip into place

- Crystals are 3-D rigid structures
- This is amethyst quartz

Wikimedia

• Liquids are deformable

Wikimedia

Mixing things up..

- Liquid Crystals (LCD's)
- Crystals in 1-Dimension
- liquids in other 2-dimensions

2010 Nobel Prize Andre Geim and Konstantin Novoselov used a block of carbon and some Scotch tape to create graphene, a new material with extraordinary properties

So what?

biomedical and gas sensors, transparent conducting materials,

"..... graphene is incredibly strong – around 200 times stronger than structural steel - but it may also form a stronger interaction when embedded in a polymer."

Maybe we could build a space elevator!

• Grapheme has hexagonal symmetry:

.....

- allows atoms to pack efficiently
- How else could we do it?

- But obviously these are the only options
- Except
- Daniel Shechtman found quasi-crystals with 5-fold symmetry
- Nobel Chemistry Prize 2012

Wikimedia