

We have always divided the sky up into "patterns" or constellations

- But remember: The stars that make up Orion are random lights in the sky

They do not represent
a mythic figure!

A long preamble...how do we name the stars?

- The brightest stars have names that derive from (usually) Arabic: e.g. Ursa Major

- Now we mostly use catalogs: the best known is Messier (pr Messié)

- A catalog of objects that aren't comets
- M1 = Crab nebula
- M3 = Globular cluster
- M31 = Andromeda galaxy
- M45 = Pleiades cluster
- M51 = Spiral galaxy
- M57 = Ring nebula

Now most objects are referred to by catalogue numbers:
e.g. BD $+59^{\circ} 1915$ is $1915^{\text {th }}$ star classified in Bonner Durchmesterung
New General Catalog has ~ 10000 galaxies
so NGC 224 = M31
So what's the system?

- There is NO system for naming objects in the heavens the same object can have several names!

e.g Sirius (Dog Star) is also
α Canis Majoris
$\alpha \mathrm{CMa}$
9 Canis Majoris
9 CMa
HD 48915,
HR 2491
BD - $16 \hat{A}^{\circ} 1591$

GCTP $1577.00 \mathrm{~A} / \mathrm{B}$,
GJ 244 A/B
LHS 219
ADS 5423
LTT 2638
HIP 32349

This seems backwards (it is!)

- a twentieth magnitude star is .00000000001 times as bright as a first magnitude star (sigh!).
- Need to have negative magnitude stars which are brighter than positive magnitude stars (double sigh!)
- Finally we have close dim stars (like Sirius) which are much brighter than distant bright stars (like Rigel) (triple sigh!)
- We'll take brightness and distance as a given, and worry about absolute numbers only.

8

Stars: some numbers

- Mass: will refer to mass of sun as M_{o}
- so Earth has a mass of ~one millionth M_{0}
- Jupiter $\sim \mathrm{M}_{0} / 1000$
- Smallest stars (brown dwarfs) ~ M $\mathrm{M}_{0} / 100$
- Largest "normal" stars $\sim 20 \mathrm{M}_{\mathrm{o}}$
- Maybe R136a1 $\sim 300 \mathrm{M}_{\mathrm{o}}$, but any star this size loses material very fast

Brightness/Magnitude

- Easiest observation about stars is that some are brighter than others.
- Hipparchus defined brightest to be of first magnitude, down to the dimmest of sixth magnitude.
- A first mag. star turns out to be $100 \times$ brighter than a 5th mag.

Binaries

- many stars are in multiple star systems: about 40% in pairs
- This is Albireo: orbital period of 75000 years

If a star is a binary, very easy to estimate mass

Mass governs how a star works

- If $\mathrm{M} \sim \mathrm{M}_{\mathrm{o}}, \Rightarrow$ star like the sun
- If $\mathrm{M} \sim \mathrm{M}_{\mathrm{o}} / 10 \Rightarrow$ red dwarf
- If $\mathrm{M} \sim \mathrm{M}_{\mathrm{o}} / 100 \Rightarrow$ Smallest stars (brown dwarfs)
- If $\mathrm{M} \sim 20 \mathrm{M}_{\mathrm{o}} \Rightarrow$ Supergiant (like Rigel or Betelgeuse)

Stars: some numbers

- Radius: sun is $\sim 1000000 \mathrm{~km}$
- Time: One million years (1 Myr) is fairly short
- To find distance, can use "parallax"
- Position of star will vary over year

one second of arc (dime at 10 km) \Rightarrow distance of one parsec
- Takes us out to 100 parsecs (400 light years)

Stars: some numbers

- Distance: light year is distance traveled by light in 1 yr
- Astronomers usually use the "parsec": $1 \mathrm{pc} \sim 4$ ly (thirty trillion km).
- Closest star (α Centauri) is at a distance of $\sim 1.3 \mathrm{pc}$. Sirius is at about 5 pc .
- Note that if we see a 3-D view of Orion, the picture changes totally!

Pearson publishing

Peter Watson

And the most important thing we learn is from barbecues

- What's hot and what's not: roughly
- red is $800^{\circ} \mathrm{C}$
- orange is $1500^{\circ} \mathrm{C}$
- yellow is $2000^{\circ} \mathrm{C}$
- blue is $15000^{\circ} \mathrm{C}$

- X-rays are 1 million ${ }^{\circ} \mathrm{C}$

-We can look at the light from the sun
- Each line is corresponds to a particular element
-e.g sodium
-and hydrogen

-So we can look at the hydrogen in the sun

Doppler shift

- Can measure how fast something is moving by looking at the light

[^0]

- We can see all this around Orion
- Sirius; fairly dim star that is very close
- Rigel: blue supergiant: would be 1000 times brighter than Sirius if it were at the same distance

Betelgeuse: red supergiant:
10000 times larger than the sun
Orbits of Mercury, Venus, Earth and Mars would be inside it!

In fact it may be 3 stars!

Small stars (like the sun)
Times are approximate in years.

- M42 (Orion's sword) is a vast cloud of gas
- turning into stars as we watch

Stellar evolution once over lightly:

- Stars are born, mature and grow old.
- We call this stellar evolution, which is stupid, since we don't talk about the evolution of a baby into an adult.
- Also note: ALL stars go through ALL the stages.
- We don't (usually) see them change because a human lifetime is so short compared to stellar

Live fast, Die Young!
Now we'll look at all of these stages in detail
S

Star Nurseries

- Eagle Nebula (M16)
- Cluster of stars just formed in centre of dark shell of dust and gas

Star Birth: Stars are born from vast clouds of gas and dust

Peter Watson

β-Pictoris

- A young star still surrounded by dust
- But it's had time to form at least one giant planet

How do stars "work"?

and stellar

structure.

> This is the stellar structure problem Hadyja HBV (BR) (Don El Chall Harley FHP) 16 March 2002 In foal to *Magic Dream CAHR - foal date $3 / 2 / 2011$

> Hadyja embodies the definitive traits of a Brazil mare - big, bold, grey mare and still enchantingly feminine with a proportional harmonious design and enrapturing charisma. Her sire, Don El Chall, world renowned for their superior type, noble elegance, perfectly balanced three-dimensional proportion

Teenagers

- XZ Tauri consists of 2 very young unstable stars, separated by about Sun-Pluto distance, emitting vast cloud of gas
- (pictures taken over 5 years)

튼
Q Peter Watson

But seriously

$$
\begin{gathered}
\text { A rather small set of } \\
\text { equations governs a star } \\
\frac{d L}{d r}=4 \pi r^{2} \rho(r) \varepsilon(r, T) \quad \frac{d m}{d r}=4 \pi r^{2} \rho(r) \\
\varepsilon(r)=a\left(\frac{T}{T_{0}}\right)^{4} \quad P=\frac{k \rho T}{\mu m_{H}} \quad \frac{d T}{d r}=-\frac{3 \kappa(r) \rho(r) L(r}{64 \pi \sigma r^{2} T^{3}} \\
\frac{d P}{d r}=-\frac{G m(r) \rho(r)}{r^{2}}
\end{gathered}
$$

Note that stars are much simpler than (e.g..) human beings: on the other hand we still need a computer to solve for one!
\square
2
Peter Watson

Executive summary

- To start burning, core of star need to get to 13 million ${ }^{\circ} \mathrm{C}$
- Stars "burn" hydrogen for most of their life, producing helium
- To "burn" helium (to carbon) star need to be much hotter (100 million ${ }^{\circ} \mathrm{C}$): small stars can't make it
- Large stars can burn carbon but process is very inefficient
- All stars run out of fuel eventually

0

- Since all the stars in a cluster form at about the same time, we can see the evolution by looking at different clusters.

Adulthood is dull

- Don't we know it!
- Finally star will run low on fuel and expand
- Becomes red giant
 Things in Heaven....

ET, phone home

Are we alone in the universe?

Peter Watson

Cosmogony: Origins of the

 Solar System- So where did the solar system come from....?

Nebular Hypothesis.

- A rotating gas cloud, probably compressed by a nearby supernova shock wave, starts to collapse.
- The central part collapses to the sun.

http://scienceclass.ning.com/

What we Thought we Knew (~1960)

- Age ~ 4.5 billion years
- All planets orbit in almost the same plane.
- Orbit shapes are nearly circular
- Most of mass the of solar system is in the sun.
- Inner planets are small and rocky (terrestrial)
- outer planets are large cold gas giants (jovian)
- moons are rocky and bare

8

- The outer planets condense first.
- Gas and dust particles out of the plane collide more often and get forced into plane

- The orbits are circularized by collisions and tidal effects.
- Solar winds removes hydrogen and helium from the inner planets.
- Terrestrial planets form from the left over refractory materials.

Peter Watson

Exoplanets: other solar systems

- first found around 51 Pegasi in 1995: 5 times as big as Jupiter

8

Now we are seeing lots of other solar systems

- Many methods \& collaborations
- Most look for tiny fluctuations in stellar brightness due to "eclipses"
- Amateurs (AXA)
- Ground-based telescopes
- CoRoT \& Kepler space telescopes

Like this! (except this is our sun and Venus, June 5)

Picture by Etienne Rollin

Regular tiny dips in brightness of star

- Orbit has to be aligned with earth
- Need to see several transits
- Does best with large planets, close to star
- "hot jupiters"

- CoRoT-7b
- mass ~ five Earth, radius~1.7 Earth
- year lasts ~ 20 hours
- FAR too hot $\left(1500^{\circ}\right)$

晏

- Kepler 22b: first earth-sized planet in

Goldlilocks zone (not too hot, not to cold!)

So planetary systems are common: do they look like ours?

Not really

- Lot of stars have hot Jupiters
- Some don't know they should be in circular orbits!
- HD80606b goes from $500^{\circ} \mathrm{C}$ to $1200^{\circ} \mathrm{C}$ in 6 hours
- Lots go backwards

Peter Watson

Kepler 36

- ~Earth sized planet + ~Neptune sized planet
- Every 97 days approach to ~ 1.5 million km

Kepler-47

- First Binary Star 2-Planet System

On the other hand ...

- Maybe we need a planet called Vulcan.
- Star Trek puts it round the star 40-Eridani: quite sensible
- Green ring is "habitable zone"

응
Peter Watson

Conclusions

- Based on a very small \# of stars and short observing time, it seems likely ALL stars have planets
- We haven't had time to observe orbits of longer than a year or so
- Maybe more than 100 billion planets in the Milky Way

So what does this do for alien life?

-Where are they?

- Enrico Fermi
- Systematized by the Drake equation
- BBC Future allows you to play with it

Search for Extraterrestrial Intelligence

- Vast amounts of data from Arecibo are never analysed
- If aliens are smart enough to communicate over large distances
- Too dumb to use cable, we could pick up their signals

The Wow signal

Where are they? Enrico Fermi The Drake Equation

- How many advanced civilizations are there in our galaxy (50 billion stars)?
- $R^{*}=(\#$ of new stars born each year $)=10$
- $f=($ fraction of stars with planets $)=100 \%$
- $\mathrm{N}_{\mathrm{e}}=(\#$ of habitable planets/system) $=0.5$
- $f_{\text {life }}=($ probability that life evolves $)=100 \%$
- $\mathrm{f}_{\text {in }}=$ (prob. that life develops intelligence) $=5 \%$
- $\mathrm{f}_{\mathrm{c}}=$ (prob. that intelligent life can communicate across space) $=5 \%$
- $L=$ (lifetime of intelligent civilization) $=3500 \mathrm{yrs}$
- $n=(\#$ of times a civilization could re-develop $)=1$
- Total number of civilizations in our galaxy at the moment?
- 42 !!!!!!!!!!!!
- Well, you decide which number I got wrong!

8
Peter Watson
5

And then there's KIC 8462852

- aka as the WTF star (Where's The Flux)
- or Tabby's star

- A Jupiter-sized planet would cause a 1% drop in light on a regular basis
- Comets?
- But it's also been dimming slowly anyway

- If you want to play games with the data, try http: / / exoplanets.org/plot/
-http: / / exoplanet.eu/index.php
- Acknowledgements:
- Pictures by Steve Gilbert, NASA, ESA
- Tabby's star: https: / / www.ted.com/talks / tabetha boyajian the most mysterious star

So what happens after?

- pulsars
- black holes
- gamma-ray bursters
- SS433
- Things that go beep and bang!

[^0]: Combining all of these
 1.Temperature (easy)
 2.Constituents (easy: eat your heart out, Augustus Comte)
 3.Distance (out to 100 pc)
 4.Luminosity (given 1. and 3.)
 5.Radius (given 1. and 4.)
 6. Mass (if it's a binary)
 7. Speed relative to us

