

When did time start to matter?

Work, eat, play, mate

- Sleep, play, mate
- Many biological processes require a coordinated sequence of events These events are repeated with a well defined period

Peter Watson

- Natural cycle ~ 24 hours 11 minutes (average) but wide variations.
- Gets reset ("phase-locked") by light
- Mostly in hypothalamus: suprachiasmatic nucleus, but requires most of endocrine system to work
- Universal in mammals: mechanism can vary, and disappear in arctic animals
- As to moral courage, I have very rarely met with the two o'clock in the morning kind. I mean unprepared courage, that which is necessary on an unexpected occasion. (Napoleon)

- Midsummer day: when the sun rises/sets in most northerly position: sunrise aligns with "heel stone"
-Measured at Stonehenge: important to define seasons and hence time to plant crops

0
Peter Watson

Sunset

South-west	West	North-west
Midwinter	Equinox	Midsummer
4 p.m.	6 p.m.	8 p.m.

- Note that position varies more as you move away from the equator

Sunset

- Note that position varies more as you move away from the equator
- Alignments let you measure summer solstice

Midsummer sunrise
Winter moonrise low point
Midwinter Sunrise
Southern moonrise (minimum)
Southern moonrise (maximum)
Midwinter sunset
Northern moonset (minimum) Northern moonset (maximum) Winter moonrise high point

Chankillo

- Much later
- Row of 13 towers on a ridge in a desert in Peru

- From observation sites the towers line up with sunrise and sunset
- Can tell date to within 2-3 days. (Ivan Ghezzi and Clive Ruggles)

Need some definitions (roughly as
the Babylonians might have used them)

- Year: interval between (e.g) most northerly sunrises. ~ 365 1/4 days
- (lunar) Month: interval between (e.g.) full moons ~ 29 1/2 days
- Solar day: interval between times when the sun is due south $=24$ hours (defn)
- Sidereal day: interval between (e.g.) Sirius being due south = solar day -4 minutes

2
Peter Watson

But note

- Year is not a whole \# ofdays
- Year is not a whole \# of lunar months
- However 19 years $=235$ lunar months (+ 2 hours): Metonic cycle
- Most societies fudge 12 months = 1 year by adding in extra days.

e.g Chinese

- Months are alternately 29 \& 30 days
- Gives year of $3541 / 3$ days
- Add in intercalary month every second or third year to re-align year and month
- Sun also passes through 12 zodiacal constellations in year (Aries, Pisces, Aquarius ...) or roughly $1 /$ month

1. The months are lunar months. This means the first day of each month beginning at midnight is the day of the astronomical dark moon.
2. Each year has 12 regular months, which are numbere equence (1 to 12) and have alternative names. Every second or third n intercalary month which may come after any regular month preceding regular month, but is designated in ${ }^{+}$? number as the
3. Every other jiéqi of the Chinese solar ye into a sign of the tropical zodiac (a prir
4. The sun always passes the wint-
5. If there are 12 months betwr counting either month 11 during which the sun r principal term or cur designated inter intercalary. Nr naming (i.f that yea suffices.
J an entry of the sun
, Capricorn) during month 11 sive occurrences of month 11, not nese 12 months must be a month .e same zodiac sign throughout (no it). If only one such month occurs, it is such months occur, only the first is designated dars before true motions of the sun were used for or in years where there is no double-cusp month in , or following years (i.e., usually), the following rule . no principal term (or cusp) in it is designated intercalary.

e.g Hebrew calendar

- Lunar months
- Intercalary month added 7 times in 19 years
- gives 6939.550 days
- vs 6939.750 days

e.g Roman calendar

-Romulus: 10 months of 30 or 31 days +61 days of winter

- Numa: 12 months of 28-31 days, totalling 355 , so add 22 or 23 days to Feb. every $2^{\text {nd }}$ year
- Julius Ceasar: essentially modern calendar with leap years adding one day to Feb every 4 years

Babylon: mun Aan taver

On the 1 st of Nisannu the Hired Man becomes visible
On the 20th of Nisannu the Crook becomes visible.
On the 1st of Ayyaru the Stars become visible.
On the 20th of Ayyaru the Jaw of the Bull becomes visible. On the 10th of Simanu the True Shepherd of Anu and the Great Twins become visible.
On the 5th of Du'uzu the Little Twins and the Crab become visible.
On the 15 th of Du'uzu the Arrow, the Snake, and the Lion become visble; 4 minas is a daytime watch, 2 minas is a nighttime watch.
On the 5th of Abu the Bow and the King become visible. On the 1st of Ululu [. . . .]
On the 10th of Ululu the star of Eridu and the Raven become visible.
On the 15th of Ululu Shu-pa, Enlil, becomes visible.
On the 25th of Ululu the Furrow becomes visible

Sundials

- Good to few minutes but
- ...Position of the noon sun in the sky varies throughout the year:

It moves against the fixed stars because the earth orbits the sun the earths axis is tilted

- it also moves in the sky at a given time of day: (i.e. the time of noon varies by about 8 minutes) because the earth moves at varying speeds in its orbit,
- so we actually need a better clock than the sun to measure this

Water-clock (probably first non-astro clock)

Water in a container drains out through small hole: problem is that the flow is non-uniform.

- Hence keep container full with valve so as to have constant pressure
- clepsydra (= "water thief")

Why do these matter?
CALPURNIA: When beggars die, there are no comets seen;
The heavens themselves blaze forth the death of princes. Julius Caesar
(Chinese astronomers Hi and Ho executed for failing to predict eclipse in 2134 $B C)$.

Text

GLOUCESTER These late eclipses in the sun and moon portend no good to us: though the wisdom of nature can reason it thus and thus, yet nature finds itself scourged by the sequent effects.....

EDMUND I am thinking, brother, of a prediction I read this other day, what should follow these eclipses.
EDGAR Do you busy yourself about that? EDMUND I promise you, the effects he writes of succeed unhappily; as of unnaturalness between the child and the parent; death, dearth, dissolutions of ancient amities; divisions in state, menaces and maledictions against king and nobles; needless diffidences, banishment of friends, dissipation of cohorts, nuptial breaches, and I know not what. EDGAR How long have you been a sectary astronomical?

Saros cycle

Eclipses repeat after 18 years and 11.3 days.

- The .3 days shifts the eclipse about 110° degrees west.
- Also some saros sequences start at the south and drift North, others at the North and drift South.
- This means that the cycle is very complex: can only see it after many years.
- Why is it so complicated? Need to combine
I.Earths rotation
II.Moons orbit (not quite circular)
III.Earth's orbit (ditto)
IV. and the plane of the moons orbit precesses

Eclipse preediction

Antikytnera

- Wreck full of sculptures

Antikythera Mechanism

- Found in 1901
- probably late second century $B C$.
- National Archaeological Museum in Athens: wikipedia

- X-rays show very complex structure
- Many (at least 30) gears: one has 47 teeth !!!!

8

- Shows Metonic sequence (235 lunar months $=19$ solar years +2 hours)
- Shows Saros eclipse cycle (223 lunar months)
- But not programmable
- No driving mechanism

Eclipse of 1999 seen from Mir

4: Computed track of totality for the eclipse of 15 April in 136 BC , assuming a fixed length of day $(\Delta \mathrm{T}=0)$. This track lies more than 50° to the west of Babylon, where totality was actually observed.

Earth's rotation has slowed down, by $\sim 1 / 100 \mathrm{sec} /$ century, because of tidal effects! i.e. earth isn't a very good time-keeper

Need three Ingredients

Pendulum

Power supply: usually gravity)

Escapement: must transfer energy to pendulum to keep it swinging

Pendulum Clock

- Invented by Huyghens (1656)
- Look at the Foucault pendulum in the entrance to Herzberg building
- Period:

$$
P=2 \pi \sqrt{\frac{L}{g}}
$$

Chronometer

At sea, need to determine latitude and longitude: see Longitude (Dava Sobel)

Peter Watson

Latitude is "easy"

- Need to be able to measure south (compass)
- and postion of sun (or star) wrt horizon
- astrolabe or sextant
- Could use Moons of Jupiter: act as astronomical timekeeper

Chronometer

Longitude problem: error on longitude typically 100 km (!) in 18th century Admiralty offered $£ 20,000$ ($\$ 10,000,000$ today) to solve problem

- Need to determine time to better than $1 \mathrm{~s} /$ day

Note that this depends on mechanical escapement mechanism

A doctor's watch c 1815

Any sufficiently advanced technology is indistinguishable from magic
 (Arthur Clarke)

My watch (c 2009)

Pulsars (1968)

- neither earth's orbit or rotation are sufficiently stable now: best astronomical timekeeper are pulsars, accidentally observed as pulsars (Jocelyn Bell etc)
- Very regular radio pulses, period of 4 S to 2 ms
- Note that height of pulse is very irregular

And you can even listen to them

- This is Vela
- And this is PSR 0329+54

What's the difference?

- Power Source: Coiled spring
- Mercury Battery
- Time: escapement mechanism
- Quartz crystal
- Displays: second hand + date wheel
- LCD
- Setting: listen to the church clock!
- Reset once a day by transmitter in Colorado Springs

Best known is Crab.
Known to be remnant from supernova in 1054 (seen by Chinese)
Pulsar at centre has period of -0.035

Frequency and Period

Note for what follows:
-for repeated motions (e.g. Oscillators), Time and frequency are closely linked
-Frequency $=1 /$ Period

- So something that vibrates with a period of 0.5 s has a frequency of 2 Hertz (2 Hz)

$$
F=\frac{1}{P}
$$

A faster atomic pendulum: ${ }^{133} \mathrm{Cs}$ atoms

Atomic Clocks

- Best is now at NRC: Caesium fountain clock better to 1 part in 10^{12} i.e. would lose or gain \sim hour over lifetime of universe: so accurate that the only comparison is one Cs clock to another!
- Works because atoms are isolated from each other, so don' influence each other
- Target is 1 part in 10^{15} : one minute in lifetime of universe

Text

Why is this precision needed?

Today's fast pace: from 0.001 s to 0.000000001 s
Synchronization of Power Networks: Uncertainty $\pm 1 \times 10^{-10}$

August 2003 Northeast Blackout - Great Lakes Region http://www.itsdocs.fhwa.dot.gov/jpodocs/repts_te/14021.htm

Computer synchronization

Sharing bandwidth and time frames with a cell phone.

Computer synchronization	
© OriginalArtist Reproduction rights obtain www.CartoonStock.com	Computer transactions
	Banks \$\$\$\$\$\$\$\$\$\$
	NRC provides encrypted time-stamped secure NTP connections for banks at a cost of $\$ 110 / \mathrm{yr}$!
	$\underset{\text { Louis }}{\text { Marmet }}$

Subdivisions of time: Direct perception

- Roughly $1 / 10 \mathrm{~s}=100 \mathrm{~ms}$, but depends very much on the stimulus
- Roughly: error in timing depends on length of interval
- Lets try it: close your eyes
- estimate when 30 s has passed
- open them and write down the value showing
- Results
- Average $=33.5 \mathrm{~s}$

- Spread $($ standard deviation $)=8.6$

Subdivisions of time: Direct perception

- Roughly $1 / 10 \mathrm{~s}=100 \mathrm{~ms}$, but depends very much on the stimulus
-E.g. Some slides stolen from Marcus Watson

The influence of shape on colour

Find the "F"

E
E
E

E
E E
E
E

E

$$
F_{E}
$$

E
E
E E
E

The influence of shape on colour

E

Limits:

- Eyes can't respond in much less than $1 / 20 \mathrm{~s}$ ($=50 \mathrm{~ms}$)
- Which is why we can watch TV

Brain will actually superimpose pictures if time is very short

The influence of shape on colour

E

Picture as seen

- But shoot it too fast
gap t < 100 ms , see one image and can pick out missing spot If the gap $\mathrm{t}>100 \mathrm{~ms}$, see two images, cannot pick out missing spot

Indirect perception via sounds

- We can hear notes in octaves: each octave is a doubling of frequency
- C Db D Eb E F Gb G Ab A Bb B

 D 9.2 18.436.773.4 146.8293 .7587 .31174 .72349 .34698 .69397 .3 Eb 9.7 19.438.977.8 155.6311 .1622 .31244 .52489 .04978 .09956 .1 E 10.320 .641 .282 .4164 .8329 .6659 .31318 .52637 .05274 .010548 .1 F 10.921.843.787.3 174.6349 .2698 .51396 .92793 .85587 .711175 .3 Gb 11.623.146.292.5 185.0370.0740.01480.02960.05919.911839.8 G 12.224.549.098.0 196.0392.0784.01568.03136.06271.912543.9 Ab 13.026.051.9103.8207.7415.3830.61661.23322.46644.913289.8 A 13.827.555.0110.0220.0440.0880.01760.03520.07040.014080.0 Bb 14.629.158.3116.5 233.1466.2932.31864.73729.37458.614917.2 B 15.430.961.7123.5246.9493.9987.81975.53951.17902.115804.3 Te
- Roughly 20 Hz to 20 kHz
- O.K. 10 kHz for us!
- I.e. 50 ms down to $0.05 \mathrm{~ms}=50 \mu \mathrm{~s}$
- (why have we bothered to evolve this?)

Electronics Directly

- Clock circuit in computer
- 2.8 GHz in this Mac:
- i.e. ~. 35 nanoseconds (ns)

Atomic transitions

- E.g the laser pointer
- Atom makes transition from one
 level to another, emitting photon
- Typical time ~ 1 picosecond (ps) $=10^{-12} \mathrm{~s}=1 /$ trillionth second=0.000000000001s

Pulsed lasers

- Paul Corkum at NRC/ Ottawa U developed techniques for cutting laser beams in few attosecond lengths:
- 1 attosecond (as) $=10^{-18}$ s
$=0.00000000000000$ 0001s
- Allows still pictures of atoms

Particle Physics

- Reactions occur roughly at speed of light over the size of a proton
- Typical time $\sim 10^{-24} \mathrm{~S}=1$ /trillion-trillionth second $=0.00000000000000000000001 \mathrm{~s}$
- 1 yoctosecond, except no-one ever calls it that

Planck time

- If we believe in superstring theory, they oscillate with a period

$$
t_{p}=\left(\frac{G \hbar}{c^{5}}\right)^{1 / 2}=5.4 \times 10^{-44} s
$$

- 0. 0000000000000000000000000 00000000000000000005 s
- Shortest time scale that makes any sense in physics

But wait a moment

- Can we really go on subdividing time?
- Is it really continuous or a succession of moments?
- Like a water-wave?

- Magnify by 1000: OK
- Magnify by 1000000 : OK
- Magnify by 100000000 : start seeing molecules

Is time continuous?

- Is space?
- Suppose space is discrete at some scale a: say 1 attometre ($1 / 1000$ size of a proton)
- Then sizes smaller than this have no meaning

- How Dali changed "the Persistence of Memory

into
- "The Disintegration of the Persistence of Memory"

Is time continuous?

- Hence time scales shorter then $\mathrm{a} / \mathrm{c} \sim 10^{-27} \mathrm{~S}$ have no meaning
- Which is roughly the kind of limit we have now
- If space or time is quantized in some way, the reality is probably much more complicated

Is time continuous?

- Hence time scales shorter then a/c $\sim 10^{-27}$ s have no meaning
- Which is roughly the kind of limit we have now
- If space or time is quantized in some way, the reality is probably much more complicated

How about large time intervals?

- Much less interesting
- Human lifetime $\sim 2 \times 10^{9} \mathrm{~s}=$ Gigasecond $=2 \mathrm{Gs} \sim 88$ years
- Lifetime of the universe $\sim 5 \times 10^{17} \mathrm{~s}=0.5$ exasecond $=.5$ Es ~ 14 billion years
- SO we can measure time to fantastic accuracy: can we even understand why there is a past and a future?

