Simple Pendulum Lab Report

Title Purpose Description Measurement

-no sample calculations needed in this section

-Five tables like the following:

Length 1

	Length (cm)	Time for 10 Swings	Period (s)
		(s)	
Trial 1			
Trial 2			
Trial 3			
Average			
Standard Deviation			
of the Mean			

-One table summarizing results

Length (cm)	Error on	Period (s)	Error on	$(\text{Period})^2 (s^2)$	Error on		
	Length (cm)		Period (s)		$(\text{Period})^2(\text{s}^2)$		
Five entries							
here							

- Error on Length (cm) use standard deviation of the mean
- Error on Period (s) use standard deviation of the mean

- Error on (Period)² (s²) use
$$\frac{P_{\text{max}}^2 - P_{\text{min}}^2}{2}$$

Analysis

-plot (Period)² (y-axis) versus length (x-axis) with error bars, label axis.

- show calculation and give units for all the following calculations

-find the slope

-draw a "best fit" line through the data

-read the coordinates (x,y) for two points on the line which are reasonably far apart.

$$-\text{slope} = \frac{y_1 - y_2}{x_1 - x_2}$$

- find g from the slope

-find the slope of the steepest line you could draw and the flattest line you could draw. -find g_{max} and g_{min} from the flattest and steepest slopes

-error on g is $\frac{g_{\text{max}} - g_{\text{min}}}{2}$

Discussion& Conclusions

-state the final result with units and error.

-comment on how "good" the value is (i.e. how close to real value given the error).

-give at least one assumption made in the lab

-give at least one suggestion to reduce the uncertainty of the final result.