Measurement of ‘g’
Outline

- Measurement of ‘g’,
 - Early attempts,
 - ‘Dilution’ of Gravity,
 - Atwood’s Machine.

- Present Day equipment,
 - Correction terms,
 - Expressed as a straight line graph.

- Procedure,
 - Starting mechanism,
 - Electrical Connections,
 - Timing Mechanism.
Early attempts

- **Galileo 1564-1642**
 - born and studied in Pisa
 - professor of mathematics at Padua
 - reputed to have dropped objects off the Leaning Tower.
 - establishing acceleration is independent of the mass.
 - but could not measure it accurately
 - 55m tall → 3.5 seconds to drop
‘Diluting’ Gravity

• To slow down the rate of descent
 • Galileo used an inclined plane,
 • Could then get reasonable accuracy
 • using a ‘water clock’
 • water pouring out of a beaker into a graduated flask.
• Showed that the distance a ball rolls,
 \[d = \frac{1}{2} a t^2 \]
• Still difficult to measure ‘a’ accurately
Atwood’s Machine ‘dilutes’ gravity

- Rev. George Atwood (1746-1807)
 - tutor at Trinity College, Cambridge
- set-up the demonstration experiment that today bears his name.
- used a very light pulley on a light axle
- supported each end of the axle
 - on the rim of two other wheels
 - to reduce friction in the bearings.

\[a = \frac{m_1 - m_2}{m_1 + m_2} g \]

Dilution factor

Atwood’s Machine
Present-day experiment

- Two unequal weights joined by a light inextensible string
- Solenoid magnet and micro-switch used to time the fall (or rise) of the masses.
- Two differences
 - 1) Uses a ‘heavy’ pulley wheel.
 - 2) With friction in the bearings.
- Have to correct for these effects.
Including the correction factors

\[
(m_1 - m_2) g - (m_1 + m_2) a = \frac{Ia}{r^2} + \frac{\Gamma}{r}
\]

Acceleration found by \(a = \frac{2h}{t^2} \)

Inertia (I) of heavy pulley, \(r \) is radius of pulley

Friction in the bearings \(\Gamma \)
Expressed as a torque \((r \times F_t) \)

Atwood's Machine
Equation of a straight line.....

Plot Δm against $1/t^2$

$\Delta m = \frac{2h}{g} \left(\frac{M}{r^2} + \frac{I}{r^2} \right) \frac{1}{t^2} + \frac{\Gamma}{gr}$

Measure t (secs) for different values of Δm

$\Delta m = m_1 - m_2$ (grams)

$M = m_1 + m_2$ (grams)

n.b. hold constant

h is measured (metres) and held constant

$I/r^2 = 80$ grams

Γ can be found from the intercept

Atwood's Machine
Procedure

- Start by weighing the washers and the weights,
 - all washers plus weights together = M,
 - weigh 10 washers and divide by ten to find average
 - the change, Δm, is twice the weight of one washer.
- Assemble onto the line and fit over pulley,
 - Measure height - h, that mass will rise,
 - Measure radius – r, of pulley (half diameter).
- N.B. when adding or removing washers, rest the other mass on the bench
Starting mechanism

- Electromagnet restrains the weights
 - until you are ready to start timing
 - Press switch to release weights and start the timer.

- N.B. One weight has an iron insert.
 - Make sure it’s over the electromagnet,
 - Set this one to be the lighter of the two
Electrical connections

- Plug electromagnet cable (grey) into MAGNET socket of electronic clock,
- N.B. beware of Mains (110v) voltage
 - Don’t touch bare wires……
- Connect the brown cable between the micro-switch terminal at the base of the pole, and the EXT.STOP of the electronic clock.
- Solenoid platform should be as low as possible,
- Plug in the micro-switch lead at the top of the pole
Electronic Timing

- Set the clock as follows
 - Set the leftmost switch to ON
 - Set the rightmost switch to EXT.STOP
 - Set the power switch (at side) to ON
 - Reset the clock (electromagnet will be activated)
 - Press the remote switch to start the timer and release the weights
 - Reset clock after each cycle

- N.B. make sure string and weights don’t touch the bench or the supports during the movement.
Go to it........

- Start weighing the masses,
- Assemble the string and pulley
- Make sure the string is long enough
- Measure the distance to rise
- Connect the electrical wires
- Switch on and take a sample measurement,
- Make sure the pulley system doesn’t snag on the bench-top or support pole.
The end